The 5-state busy beaver (BB(5) ) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch ). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1] , this machine proved that
BB
(
5
)
≥
47176870
{\displaystyle \operatorname {BB} (5)\geq 47176870}
and
Σ
(
5
)
≥
4098
{\displaystyle \Sigma (5)\geq 4098}
at the time.
Analysis
Rules
Let
g
(
x
)
:=
0
∞
<A
1
x
0
∞
{\displaystyle g(x):=0^{\infty }\;{\textrm {<A}}\,1^{x}\;0^{\infty }}
. Then[2] ,
g
(
3
x
)
→
5
x
2
+
19
x
+
15
g
(
5
x
+
6
)
,
g
(
3
x
+
1
)
→
5
x
2
+
25
x
+
27
g
(
5
x
+
9
)
,
g
(
3
x
+
2
)
→
6
x
+
12
0
∞
1
Z>
01
001
x
+
1
1
0
∞
.
{\displaystyle {\begin{array}{|lll|}\hline g(3x)&\xrightarrow {5x^{2}+19x+15} &g(5x+6),\\g(3x+1)&\xrightarrow {5x^{2}+25x+27} &g(5x+9),\\g(3x+2)&\xrightarrow {6x+12} &0^{\infty }\;1\;{\textrm {Z>}}\;01\;001^{x+1}\;1\;0^{\infty }.\\\hline \end{array}}}
Proof
Consider the configuration
C
(
m
,
n
)
:=
0
∞
<A
1
m
001
n
1
0
∞
{\displaystyle C(m,n):=0^{\infty }\;{\textrm {<A}}\;1^{m}\;001^{n}\;1\;0^{\infty }}
. After one step this configuration becomes
0
∞
1
B>
1
m
001
n
1
0
∞
{\displaystyle 0^{\infty }\;1\;{\textrm {B>}}\;1^{m}\;001^{n}\;1\;0^{\infty }}
. We note the following shift rule:
B>
1
a
→
a
1
a
B>
{\displaystyle {\begin{array}{|c|}\hline {\textrm {B>}}\;1^{a}\xrightarrow {a} 1^{a}\;{\textrm {B>}}\\\hline \end{array}}}
Using this shift rule, we get
0
∞
1
m
+
1
B>
001
n
1
0
∞
{\displaystyle 0^{\infty }\;1^{m+1}\;{\textrm {B>}}\;001^{n}\;1\;0^{\infty }}
after
m
{\displaystyle m}
steps. If
n
=
0
{\displaystyle n=0}
, then we get
0
∞
1
m
+
4
<A
1
0
∞
{\displaystyle 0^{\infty }\;1^{m+4}\;{\textrm {<A}}\;1\;0^{\infty }}
four steps later. Another shift rule is needed here:
1
3
a
<A
→
3
a
<A
001
a
{\displaystyle {\begin{array}{|c|}\hline 1^{3a}\;{\textrm {<A}}\xrightarrow {3a} {\textrm {<A}}\;001^{a}\\\hline \end{array}}}
In this instance,
⌊
m
+
4
3
⌋
{\textstyle {\Big \lfloor }{\frac {m+4}{3}}{\Big \rfloor }}
is substituted for
a
{\displaystyle a}
, which creates three different scenarios depending on the value of
m
{\displaystyle m}
modulo 3. They are as follows:
If
m
+
4
≡
0
(
mod
3
)
{\displaystyle m+4\equiv 0\ (\operatorname {mod} 3)}
, then in
m
+
4
{\displaystyle m+4}
steps we arrive at
0
∞
<A
001
(
m
+
4
)
/
3
1
0
∞
{\displaystyle 0^{\infty }\;{\textrm {<A}}\;001^{(m+4)/3}\;1\;0^{\infty }}
, which is the same configuration as
C
(
0
,
m
+
4
3
)
{\textstyle C{\Big (}0,{\frac {m+4}{3}}{\Big )}}
.
If
m
+
4
≡
1
(
mod
3
)
{\displaystyle m+4\equiv 1\ (\operatorname {mod} 3)}
, then in
m
+
3
{\displaystyle m+3}
steps we arrive at
0
∞
1
<A
001
(
m
+
3
)
/
3
1
0
∞
{\displaystyle 0^{\infty }\;1\;{\textrm {<A}}\;001^{(m+3)/3}\;1\;0^{\infty }}
, which in five steps becomes
0
∞
<A
111
001
(
m
+
3
)
/
3
1
0
∞
{\displaystyle 0^{\infty }\;{\textrm {<A}}\;111\;001^{(m+3)/3}\;1\;0^{\infty }}
, equal to
C
(
3
,
m
+
3
3
)
{\textstyle C{\Big (}3,{\frac {m+3}{3}}{\Big )}}
.
If
m
+
4
≡
2
(
mod
3
)
{\displaystyle m+4\equiv 2\ (\operatorname {mod} 3)}
, then in
m
+
2
{\displaystyle m+2}
steps we arrive at
0
∞
11
<A
001
(
m
+
2
)
/
3
1
0
∞
{\displaystyle 0^{\infty }\;11\;{\textrm {<A}}\;001^{(m+2)/3}\;1\;0^{\infty }}
, which in three steps halts with the configuration
0
∞
1
Z>
01
001
(
m
+
2
)
/
3
1
0
∞
{\displaystyle 0^{\infty }\;1\;{\textrm {Z>}}\;01\;001^{(m+2)/3}\;1\;0^{\infty }}
, for a total of
2
m
+
10
{\displaystyle 2m+10}
steps from
C
(
m
,
0
)
{\displaystyle C(m,0)}
.
Returning to
0
∞
1
m
+
1
B>
001
n
1
0
∞
{\displaystyle 0^{\infty }\;1^{m+1}\;{\textrm {B>}}\;001^{n}\;1\;0^{\infty }}
, if
n
≥
1
{\displaystyle n\geq 1}
, then in three steps it changes into
0
∞
1
m
+
3
<D
1
001
n
−
1
1
0
∞
{\displaystyle 0^{\infty }\;1^{m+3}\;{\textrm {<D}}\;1\;001^{n-1}\;1\;0^{\infty }}
. Here we can make use of one more shift rule:
1
a
<D
→
a
<D
1
a
{\displaystyle {\begin{array}{|c|}\hline 1^{a}\;{\textrm {<D}}\xrightarrow {a} {\textrm {<D}}\;1^{a}\\\hline \end{array}}}
Doing so takes us to
0
∞
<D
1
m
+
4
001
n
−
1
1
0
∞
{\displaystyle 0^{\infty }\;{\textrm {<D}}\;1^{m+4}\;001^{n-1}\;1\;0^{\infty }}
in
m
+
3
{\displaystyle m+3}
steps, which after one step becomes the configuration
0
∞
<A
1
m
+
5
001
n
−
1
1
0
∞
{\displaystyle 0^{\infty }\;{\textrm {<A}}\;1^{m+5}\;001^{n-1}\;1\;0^{\infty }}
, equal to
C
(
m
+
5
,
n
−
1
)
{\displaystyle C(m+5,n-1)}
. To summarize:
C
(
m
,
n
)
→
2
m
+
8
C
(
m
+
5
,
n
−
1
)
if
n
≥
1.
{\displaystyle {\begin{array}{|c|}\hline C(m,n)\xrightarrow {2m+8} C(m+5,n-1){\text{ if }}n\geq 1.\\\hline \end{array}}}
We have
g
(
x
)
=
C
(
x
−
1
,
0
)
{\displaystyle g(x)=C(x-1,0)}
. As a result, if
x
≡
0
(
mod
3
)
{\displaystyle x\equiv 0\ (\operatorname {mod} 3)}
, we then get
C
(
0
,
1
3
x
+
1
)
{\textstyle C{\Big (}0,{\frac {1}{3}}x+1{\Big )}}
and the above rule is applied until we reach
C
(
5
3
x
+
5
,
0
)
{\textstyle C{\Big (}{\frac {5}{3}}x+5,0{\Big )}}
, equal to
g
(
5
3
x
+
6
)
{\textstyle g{\Big (}{\frac {5}{3}}x+6{\Big )}}
, in
∑
i
=
0
x
/
3
(
2
×
5
i
+
8
)
=
5
9
x
2
+
13
3
x
+
8
{\displaystyle \sum _{i=0}^{x/3}(2\times 5i+8)=\textstyle {\frac {5}{9}}x^{2}+{\frac {13}{3}}x+8}
steps for a total of
5
9
x
2
+
19
3
x
+
15
{\textstyle {\frac {5}{9}}x^{2}+{\frac {19}{3}}x+15}
steps from
g
(
x
)
{\displaystyle g(x)}
(with
g
(
0
)
{\displaystyle g(0)}
we see the impossible configuration
C
(
−
1
,
0
)
{\displaystyle C(-1,0)}
, but it reaches
g
(
6
)
{\displaystyle g(6)}
in 15 steps regardless). However, if
x
≡
1
(
mod
3
)
{\displaystyle x\equiv 1\ (\operatorname {mod} 3)}
, we then get
C
(
3
,
x
+
2
3
)
{\textstyle C{\Big (}3,{\frac {x+2}{3}}{\Big )}}
which reaches
C
(
3
+
5
(
x
+
2
)
3
,
0
)
{\textstyle C{\Big (}3+{\frac {5(x+2)}{3}},0{\Big )}}
, equal to
g
(
5
x
+
22
3
)
{\textstyle g{\Big (}{\frac {5x+22}{3}}{\Big )}}
, in
5
9
x
2
+
47
9
x
+
74
9
{\textstyle {\frac {5}{9}}x^{2}+{\frac {47}{9}}x+{\frac {74}{9}}}
steps (
5
9
x
2
+
65
9
x
+
173
9
{\textstyle {\frac {5}{9}}x^{2}+{\frac {65}{9}}x+{\frac {173}{9}}}
steps total).
The information above can be summarized as[3]
g
(
x
)
→
{
g
(
5
3
x
+
6
)
if
x
≡
0
(
mod
3
)
g
(
5
x
+
22
3
)
if
x
≡
1
(
mod
3
)
0
∞
1
Z>
01
001
(
x
+
1
)
/
3
1
0
∞
if
x
≡
2
(
mod
3
)
{\displaystyle g(x)\rightarrow {\begin{cases}g{\Big (}{\frac {5}{3}}x+6{\Big )}&{\text{if }}x\equiv 0{\pmod {3}}\\g{\Big (}{\frac {5x+22}{3}}{\Big )}&{\text{if }}x\equiv 1{\pmod {3}}\\0^{\infty }\;1\;{\textrm {Z>}}\;01\;001^{(x+1)/3}\;1\;0^{\infty }&{\text{if }}x\equiv 2{\pmod {3}}\end{cases}}}
Substituting
x
←
3
x
{\displaystyle x\leftarrow 3x}
,
x
←
3
x
+
1
{\displaystyle x\leftarrow 3x+1}
, and
x
←
3
x
+
2
{\displaystyle x\leftarrow 3x+2}
to each of these cases respectively gives us our final result.
Trajectory
An animation of
g
(
0
)
{\displaystyle g(0)}
becoming
g
(
34
)
{\displaystyle g(34)}
in 365 steps (click to view ).
The initial blank tape represents
g
(
0
)
{\displaystyle g(0)}
, and the Collatz-like rules are iterated 15 times before halting:
g
(
0
)
→
15
g
(
6
)
→
73
g
(
16
)
→
277
g
(
34
)
→
907
g
(
64
)
→
2757
g
(
114
)
→
7957
g
(
196
)
→
22777
g
(
334
)
→
64407
g
(
564
)
→
180307
g
(
946
)
→
504027
g
(
1584
)
→
1403967
g
(
2646
)
→
3906393
g
(
4416
)
→
10861903
g
(
7366
)
→
30196527
g
(
12284
)
→
24576
0
∞
1
Z>
01
001
4095
1
0
∞
{\displaystyle {\begin{array}{|lllllllllll|}\hline g(0)&\xrightarrow {15} &g(6)&\xrightarrow {73} &g(16)&\xrightarrow {277} \\g(34)&\xrightarrow {907} &g(64)&\xrightarrow {2757} &g(114)&\xrightarrow {7957} \\g(196)&\xrightarrow {22777} &g(334)&\xrightarrow {64407} &g(564)&\xrightarrow {180307} \\g(946)&\xrightarrow {504027} &g(1584)&\xrightarrow {1403967} &g(2646)&\xrightarrow {3906393} \\g(4416)&\xrightarrow {10861903} &g(7366)&\xrightarrow {30196527} &g(12284)&\xrightarrow {24576} &0^{\infty }\;1\;{\textrm {Z>}}\;01\;001^{4095}\;1\;0^{\infty }\\\hline \end{array}}}
References