BB(4,3)

From BusyBeaverWiki
Revision as of 18:23, 6 February 2025 by Sligocki (talk | contribs) (Created page with "TODO == Potential Champions == In May 2024, Pavel Kropitz found 7 halting TMs that run for a large number of steps, but have not been analyzed in detail:<pre> Halt(SuperPowers(2)),2,0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD,4,6,0,0,36,11,0,20175,2303,1 2^((80*2^((<(8*2^((8*2^(29) - 2)) - 5); (<(80*2^((b - 10)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4); (<(80*2^((<(80*2^((8*2^((8*2^(29) - 2)) - 3)) - 13)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (4...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

TODO

Potential Champions

In May 2024, Pavel Kropitz found 7 halting TMs that run for a large number of steps, but have not been analyzed in detail:

Halt(SuperPowers(2)),2,0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD,4,6,0,0,36,11,0,20175,2303,1 2^((80*2^((<(8*2^((8*2^(29) - 2)) - 5); (<(80*2^((b - 10)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4); (<(80*2^((<(80*2^((8*2^((8*2^(29) - 2)) - 3)) - 13)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> - 6)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4)> - 10)/5) - 3)) 1 0 1 2 1^2 Z> 1 2^2 1 
Halt(SuperPowers(2)),2,0RB1RZ1RC_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD,4,6,0,0,36,11,0,19962,2285,1 2^((80*2^((<(8*2^((8*2^(29) - 2)) - 5); (<(80*2^((b - 10)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4); (<(80*2^((<(80*2^((8*2^((8*2^(29) - 2)) - 3)) - 13)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> - 6)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4)> - 10)/5) - 3)) 1 0 1 2 1^2 Z> 1 2^2 1 
Halt(SuperPowers(1)),1,1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD,0,5,0,0,10,11,0,473,786,1 Z> 1^((8*<7; (6*2^((4b + 14)) - 4); (6*2^((48*2^(21) - 2)) - 4)> + 33)) 2 
Halt(SuperPowers(2)),2,1RB1LA2LA_1LA2RC1LB_1RD2RB0LC_0RA1RZ0RA,4,6,0,0,36,11,0,20175,2302,1 2^((80*2^((<(8*2^((8*2^(29) - 2)) - 5); (<(80*2^((b - 10)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4); (<(80*2^((<(80*2^((8*2^((8*2^(29) - 2)) - 3)) - 13)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> - 6)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4)> - 10)/5) - 3)) 1 0 1 2 1^2 Z> 1 2^2 1 
Halt(SuperPowers(2)),2,1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD,2,7,0,0,45,17,0,1877,2890,1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19)) 
Halt(SuperPowers(2)),2,1RB1LA2LA_1LA2RC1LB_1RD2RB0LC_0RA1RZ1RB,4,6,0,0,36,11,0,19962,2284,1 2^((80*2^((<(8*2^((8*2^(29) - 2)) - 5); (<(80*2^((b - 10)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4); (<(80*2^((<(80*2^((8*2^((8*2^(29) - 2)) - 3)) - 13)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> - 6)/5) - 17)/9; (40*2^((8*2^((a - 11)/5) - 2)) - 4); (40*2^(2) - 4)> + 4)> - 10)/5) - 3)) 1 0 1 2 1^2 Z> 1 2^2 1 
Halt(SuperPowers(2)),2,1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD,1,10,0,0,29,9,0,6454,1706,1 Z> 1^(162*3^((3*<(243*3^(6) - 5)/2; (<(54*3^((3b + 11)/2) - 2); (54*3^((3b + 14)/2) - 6); (54*3^(7) - 6)> + 1); (<(54*3^((3*<(54*3^(7) - 3); (54*3^((3b + 14)/2) - 6); (54*3^((81*3^(7) - 2)) - 6)> + 14)/2) - 2); (54*3^((3b + 14)/2) - 6); (54*3^(7) - 6)> + 1)> + 11)/2)) 2