Mother of Giants

From BusyBeaverWiki
Revision as of 19:13, 28 August 2025 by Polygon (talk | contribs) (→‎1RB1LE_0LC0LB_0LD1LC_1RD1RA_1RC0LA: Added maximum known reset config)
Jump to navigation Jump to search
Unsolved problem:
Does the Mother of Giants quasihalt? If so, how many steps does it take to quasihalt?

The Mother of Giants is a collection of adjacent Turing machines, some of which are Cryptids in the 5-state Beeping Busy Beaver problem that probviously quasihalt. They must all be proven to halt or not if we want to solve BBB(5).

The TMs are all the "children" of 1RB1LE_0LC0LB_0LD1LC_1RD1RA_---0LA where children means all the TMs created by filling in the undefined E0 transition.

Overview of the children

An overview of the 8 most interesting children.

Machine Status
1RB1LE_0LC0LB_0LD1LC_1RD1RA_1RC0LA (bbch) and 1RB1LE_0LC0LB_0LD1LC_1RD1RA_1LC0LA (bbch) Probviously quasihalting Cryptids
1RB1LE_0LC0LB_0LD1LC_1RD1RA_1LA0LA (bbch) Probviously quasihalting Cryptid
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0LC0LA (bbch) Probviously quasihalting Cryptid
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch) (current champion) and 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0LD0LA (bbch) Quasihalt after steps.[1]
1RB1LE_0LC0LB_0LD1LC_1RD1RA_1RD0LA (bbch) Quasihalts after about steps.[2]
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RD0LA (bbch) Quasihalts after about steps.[1]

1RB1LE_0LC0LB_0LD1LC_1RD1RA_1RC0LA

Probviously quasihalting Cryptid with collatz-like behaviour. Analysis by Shawn Ligocki:


Let: F(a, b, c) = 0^∞ <D 0^a 10^b 1^c 0^∞

The Mother of Giants (and all of her children) satisfies the following rules:

F(a, b + 2, c) → F(a + 7, b, c)
F(a, 1, c + 1) → F(a + 6, 0, c)

F(2k + 1, 0, c + 2) → F(1, k + 2, c + 1)

F(a, 0, 1) → F(1, 0, a + 3)
F(a, 0, 0) → Spin Out / Quasihalt

Blank tape → F(1, 0, 1) (at step 4)
(I leave proof of these rules as an exercise for the reader. They follow a similar style to those proofs in previous Collatz analysis posts.)

There’s one rule missing from this list. What happens after config F(2k, 0, c + 2)? This is the one part of the analysis where each child brings their own unique twist!
For E0 → 1RC:
F(2k, 0, c + 2) → F(1, k + 3, c + 1)

Collatz Behavior of 1RC
Let G(n, m) = F(n, 0, m) = 0^∞ <D 0^n 1^m 0^∞

First, we can combine the first two rules in order to eliminate b immediately:

F(a, 2k, c) → F(7k+a, 0, c) = G(7k+a, c)
F(a, 2k+1, c+1) → F(7k+a, 1, c+1) → F(7k+a+6, 0, c) = G(7k+a+6,c)
Going further, it helps to have a specific machine in mind: let’s explore the E0→1RC machine.

Let G(n, m) = F(n, 0, m) = 0^∞ <D 0^n 1^m 0^∞
then:

G(4k, m+2) → F(1, 2k+3, m+1) → G(7k+14, m)
G(4k+1, m+2) → F(1, 2k+2, m+1) → G(7k+8, m+1)
G(4k+2, m+2) → F(1, 2k+4, m+1) → G(7k+15, m+1)
G(4k+3, m+2) → F(1, 2k+3, m+1) → G(7k+14, m)

G(n, 1) → G(1, n + 3)
G(n, 0) → Spin Out / Quasihalt

The current maximum known reset config for this TM is .

1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA and 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0LD0LA

Both quasihalt after steps, with 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch) taking more steps to quasihalt. Analysis by Shawn Ligocki:

let
  G(n, m) = 0^inf <D 0^n 1^m 0^inf
then:
  G(4k  , m+2) -> G(7k+ 7, m)
  G(4k+1, m+2) -> G(7k+ 8, m+1)
  G(4k+2, m+2) -> G(7k+ 8, m+1)
  G(4k+3, m+2) -> G(7k+14, m)
  G(n, 1) -> G(1, n+3)
  G(n, 0) -> Spin Out
If you compare this to my Collatz-like analysis of the 10^4079 machine (emailed on Mar 16), you'll see that it is extremely similar! The only difference is two of the constants on the right have changed. And likewise the 10^325 machine also had a similar Collatz-like analysis. So it appears that the 5x2 TM space has been able to simulate many parameterizations of these 2-stage style Collatz-like functions and we are noticing the especially "lucky" ones which run for quite a long time before quasihalting (but not toooo "lucky" or else my simulator will not run long enough to catch them).

The orbit for this TM starting on a blank tape is:

  0 : G(1, 1)
  1 : G(1, 4)
    2 : G(8, 3)
    3: G(21, 1)
  4 : G(1, 24)
    5 : G(8, 23)
    6 : G(21, 21)
    7 : G(43, 20)
    8 : G(84, 18)
    9 : G(154, 16)
    10 : G(274, 15)
    11 : G(484, 14)
    12 : G(854, 12)
    13 : G(1499, 11)
    14 : G(2632, 9)
    15 : G(4613, 7)
    16 : G(8079, 6)
    17 : G(14147, 4)
    18 : G(24766, 2)
    19 : G(43345, 1)
  20 : G(1, 43348)
    21 : G(8, 43347)
    22 : G(21, 43345)
    ...

    28_832 : G(2533...2210, 0)

    Spin out

So, it grew m up to >43k before spinning out (vs. 12k in the 10^4079 case).

1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RD0LA

Quasihalts after about steps. Analysis by Shawn Ligocki:

let
  G(n, m) = 0^inf <E 0^n 1^m 0^inf
then
  G(4k+1, m+2) -> G(7k+ 8, m+1)
  G(4k+2, m+2) -> G(7k+ 6, m+1)
  G(4k+3, m+2) -> G(7k+14, m)
  G(4k+4, m+2) -> G(7k+12, m)
  G(n, 1) -> G(1, n+3)
  G(n, 0) -> Spin Out
and for completeness (although we can never reach G(0, m) by applying these rules):
  G(0, m+2) -> G(7, m)
and finally, at step 4 we are in G(1, 1).

As before, iterating these relations leads to a sort of "2-stage" Collatz-like behavior:
  G(1, 1)
  G(1, 4)
    G(8, 3)
    G(19, 1)
  G(1, 22)
    G(8, 21)
    G(19, 19)
    G(42, 17)
    G(76, 16)
    G(138, 14)
    G(244, 13)
    G(432, 11)
    G(761, 9)
    G(1338, 8)
    G(2344, 7)
    G(4107, 5)
    G(7196, 3)
    G(12598, 1)
  G(1, 12601)
    G(8, 12600)
    G(19, 12598)
    ...
G(1876213840710521598391379605525487806521622108810778432527722867392307436766159159315654305525834552560172561652032118063458627370309987185176524224005388698700446967268349729419384342385261686600728253800107702390205303703109911013679543376784994065131479319486732208008605302317371513424001996538578227420511014587912085639154043098929108973505716971259211164084851171147584492195641828442403195419357046301200977722765015982127629619366127227507539382553155352425623517192820793588314301840633848042122283284527197514334793445174332133304252240350530614310123013246222482691057522680607329801073658994807307108563977792602674937915145127717601763644562450026084468482011253492787037376937107425102889344711991496275353115166560777221320784075353693443765935139868061950972649919070516499077698769361018135243624369764825602272332642411663431603264357025025605181511270774475664657506683051463739351416893336641567178700404415824985611548629898352736718482963400988142981278524634899806152389037871669098549259903261356156435822856442997107359268004720245053216395652317114834047445010107196444627059271727548915696497640596592913994488623239627564677236759609661035594688933526335837056500047460869283130575904150442715133699885285716657627307991036082003072952095275483832305837708309180971389464320818551264951669392266140549796563778468321806984538951296296552524443477377012382914243026356951988052699080778947387243967930857325467739175240274180541636551276654811833607927610176824006302410755537315645723335878886137585589884378754363497710819886157044977428594424751379562193743624891055837449756993817095474523342307530343858042369299814007843193782820421402610428397007107529266963233646286254595510683332294534735691214261351756352969840115522216379692717569241523917906031879093475856928361266209321993314289669996574460021380115709710519270157850694498748462253621222466800698577194648206832226152375452456786050873778773714111576650409478390819793529657854689649591879416169292957147115001498762307255727596635383777744252057, 0)
  Spin Out

See also

https://www.sligocki.com/2022/04/03/mother-of-giants.html for details.

References