1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF
1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF
(bbch) is a halting BB(7) TM which runs for over steps.
Analysis by Shawn Ligocki
Consider general configurations matching the regex: Failed to parse (syntax error): {\displaystyle 0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty}
Low level rules
01 1 01^n 0011100 A> 00 --> 1 01^n+2 0011100 A> 01^3 11 01^n 0011100 A> 0^6 --> 1 01^n+5 1 01 0011100 A> 01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6 --> 1 01^n+6 (1 01)^k 11 01 0011100 A> 011 (1 01)^k 11 01^n 0011100 A> 0^2 --> 1 Z> 111 01^n+1 00 101^k+2
Mid level rules
Let
Failed to parse (syntax error): {\displaystyle B(a; b, c, ..., z) = 0^\infty \; 111 \; (01)^{3z+1} \; 1 \; \cdots \; 1 (01)^{3c+1} \; 1 \; (01)^{3b+1} \; 1 \; (01)^0 \; 1 \; (01)^{3a+1} \; 0011100 \; \text{A>} \; 0^\infty }
and let B(a; [x]*k, y, ...)
= (In other words, [x]*k
represents k repeats of the value x in a config).
then
B(a; b+1, ...) -> B(2a+4; b, ...) B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...) B(a; [0]*k) -> Halt(3a + 2k + 9) Start at step 8178: B(2, [1]*12)
High level rule
Let
then
Bound
Let
Failed to parse (unknown function "\begin{array}"): {\displaystyle \begin{array}{l} a_0 & = & 2 \\ a_{k+1} & = & f_k(a_k) \\ }
then
and so this TM halts with a sigma score of
Note that and so for ,
and so this TM halts with sigma score .
This bound is pretty tight: .