1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF

From BusyBeaverWiki
Revision as of 20:09, 13 May 2025 by Sligocki (talk | contribs) (Created page with "{{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} {{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is a halting BB(7) TM which runs for over <math>2 \uparrow^{12} 2 \uparrow^{12} 3</math> steps. == Analysis by Shawn Ligocki == Consider general configurations matching the regex: <math>0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty</math> === Low level rules === <pre> 01 1 01^n 0011100 A> 00 -->...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch) is a halting BB(7) TM which runs for over steps.

Analysis by Shawn Ligocki

Consider general configurations matching the regex: Failed to parse (syntax error): {\displaystyle 0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty}

Low level rules

              01 1 01^n 0011100 A> 00   -->                 1 01^n+2 0011100 A>
           01^3 11 01^n 0011100 A> 0^6  -->            1 01^n+5 1 01 0011100 A>
01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6  -->  1 01^n+6 (1 01)^k 11 01 0011100 A>
 011 (1 01)^k   11 01^n 0011100 A> 0^2  -->  1 Z> 111 01^n+1 00 101^k+2

Mid level rules

Let

Failed to parse (syntax error): {\displaystyle B(a; b, c, ..., z) = 0^\infty \; 111 \; (01)^{3z+1} \; 1 \; \cdots \; 1 (01)^{3c+1} \; 1 \; (01)^{3b+1} \; 1 \; (01)^0 \; 1 \; (01)^{3a+1} \; 0011100 \; \text{A>} \; 0^\infty }

and let B(a; [x]*k, y, ...) = (In other words, [x]*k represents k repeats of the value x in a config).

then

B(a; b+1, ...) -> B(2a+4; b, ...)
B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...)
B(a; [0]*k) -> Halt(3a + 2k + 9)

Start at step 8178: B(2, [1]*12)

High level rule

Let

then

Bound

Let

Failed to parse (unknown function "\begin{array}"): {\displaystyle \begin{array}{l} a_0 & = & 2 \\ a_{k+1} & = & f_k(a_k) \\ }

then

and so this TM halts with a sigma score of

Note that and so for ,

and so this TM halts with sigma score .

This bound is pretty tight: .