1RB1RZ_0RC0RE_1LD1LA_1LC0LG_0RF1LF_0RD1LF_1LB0LE
1RB1RZ_0RC0RE_1LD1LA_1LC0LG_0RF1LF_0RD1LF_1LB0LE
(bbch) is a tetrational halting BB(7) TM with sigma score over . It was found by Andrew Ducharme on 6 Jun 2025 (Discord link).
Analysis by Shawn Ligocki
This TM goes through 2 phases: Phase A and Phase B.
A(a, b) = 0^inf <F 10 1^a 00 1^b 0^inf B(a, b, c, d, e) = 0^inf <F 1^2a+1 00 1^2b 0^2c+1 1^d 00 1^e 0^inf f1(x) = 2x+2 f2(x) = f1^x(4) = 6 2^b - 2 Phase A: Start --(13)--> A(1, 0) A(3k, 0) -> B(0, 4, 0, 4k-3, 4) A(3k+1, 0) -> A(4k+4, 0) A(3k+2, 0) -> A(4k+6, 0) Phase B: B(0, b, 0, 3k, e) -> B(0, f1(f2^k(b)), 0, 4k+e, 0) B(0, b, 0, 3k+1, e) -> B(0, f2^{k+1}(b), 0, 4k+e+4, 0) B(0, b, 0, 3k+2, e) -> Halt(2 f2^k(b) + 4k + e + 12)
The trajectory is:
Phase A: 1 4 8 14 22 32 46 64 88 120 Phase B: B(4, 157, 4) B(a, 216, 0) a = f2^{53}(4) B(b, 288, 0) b = f1(f2^{72}(a)) = f1( f2^{125}(4) ) B(c, 384, 0) c = f1(f2^{96}(b)) B(d, 512, 0) d = f1(f2^{128}(b)) Halt(2e + 692) e = f2^{170}(d)
If we ignore the f1
calls and note that then the sigma score at halt is larger than .