User:MrSolis/Playground

From BusyBeaverWiki
Revision as of 22:41, 8 February 2025 by MrSolis (talk | contribs)
Jump to navigation Jump to search

5-state busy beaver winner (WIP Revamp)

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that BB(5)47176870 and Σ(5)4098 at the time.

Analysis

Rules

Let g(x):=0<A1x0. Then[2], g(3x)5x2+19x+15g(5x+6),g(3x+1)5x2+25x+27g(5x+9),g(3x+2)6x+1201Z>01001x+110.

Proof

Consider the configuration C(m,n):=0<A1m001n10. After one step this configuration becomes 01B>1m001n10. We note the following shift rule: B>1aa1aB> Using this shift rule, we get 01m+1B>001n10 after m steps. If n=0, then we get 01m+4<A10 four steps later. Another shift rule is needed here: 13a<A3a<A001a In this instance, m+43 is substituted for a, which creates three different scenarios depending on the value of m modulo 3. They are as follows:

  1. If m+40 (mod3), then in m+4 steps we arrive at 0<A001(m+4)/310, which is the same configuration as C(0,m+43).
  2. If m+41 (mod3), then in m+3 steps we arrive at 01<A001(m+3)/310, which is five steps becomes 0<A111001(m+3)/310, equal to C(3,m+33).
  3. If m+42 (mod3), then in m+2 steps we arrive at 011<A001(m+2)/310, which in three steps halts with the configuration 01Z>01001(m+2)/310, for a total of 2m+10 steps from C(m,0).

Returning to 01m+1B>001n10, if n1, then in three steps it changes into 01m+3<D1001n110. Here we can make use of one more shift rule: 1a<Da<D1a Doing so takes us to 0<D1m+4001n110 in m+3 steps, which after one step becomes the configuration 0<A1m+5001n110, equal to C(m+5,n1). To summarize: C(m,n)2m+8C(m+5,n1) if n1. We have g(x)=C(x1,0). As a result, if x0 (mod3), we then get C(0,13x+1) and the above rule is applied until we reach C(53x+5,0), equal to g(53x+6), in i=0x/3(2×5i+8)=59x2+133x+8 steps for a total of 59x2+193x+15 steps from g(x) (with g(0) we see the impossible configuration C(1,0), but it reaches g(6) in 15 steps regardless). However, if x1 (mod3), we then get C(3,x+23) which reaches C(3+5(x+2)3,0), equal to g(5x+223), in 59x2+479x+749 steps (59x2+659x+1739 steps total).

The information above can be summarized as[3] g(x){g(53x+6)if x0(mod3)g(5x+223)if x1(mod3)01Z>01001(x+1)/310if x2(mod3) Substituting x3x, x3x+1, and x3x+2 to each of these cases respectively gives us our final result.

Trajectory

An animation of g(0) becoming g(34) in 365 steps (click to view).

The initial blank tape represents g(0), and the Collatz-like rules are iterated 15 times before halting: g(0)15g(6)73g(16)277g(34)907g(64)2757g(114)7957g(196)22777g(334)64407g(564)180307g(946)504027g(1584)1403967g(2646)3906393g(4416)10861903g(7366)30196527g(12284)2457601Z>01001409510

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
  3. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf