Champions: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
DF376 (talk | contribs)
2-Symbol TMs: Clarification in the notation.
Racheline (talk | contribs)
updated BB(9), BB(10) and BB(11)
Line 47: Line 47:
|-
|-
|BB(9)
|BB(9)
|<math>> 10 \uparrow\uparrow 30</math>
|<math>> 10 \uparrow\uparrow 1820</math>
|{{TM|1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1RI1RG|halt}}
|{{TM|1LB0LC_1RC0LI_1LA0RB_1RE1RD_0LF0LI_0RG1LF_1RD1RH_1RZ0RD_1LE1LI|halt}}
|Designed by Milton Green in 1964 ([[Green's machines]])
|Designed by Racheline in 2024
|-
|-
|BB(10)
|BB(10)
|<math> > 10 \uparrow\uparrow 10^{10^{12}} </math>
|<math> > 10 \uparrow\uparrow\uparrow\uparrow\uparrow 4 </math>
|{{TM|1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1RJ1RH|halt}}
|{{TM|1LB0LD_0LC0LA_1RC0RA_0LB0LF_1RF1RE_0LG0LJ_0RH1LG_1RE1RI_1RZ0RE_1LF1LJ|halt}}
|[[Green's machines]]
|Designed by Racheline in 2024
|-
|-
|BB(11)
|BB(11)
|<math> > 10 \uparrow\uparrow\uparrow 10^{12} </math>
|
|{{TM|1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1RK1RI|halt}}
|
|[[Green's machines]]
|
|-
|-
|BB(12)
|BB(12)

Revision as of 00:59, 15 August 2024

Busy Beaver Champions are the current record holding Turing machines who maximize a Busy Beaver function. In this article we focus specifically on the longest running TMs. Some have been proven to be the longest running of all (and so are the ultimate champion) while others are only current champions and may be usurped in the future. For smaller domains, Pascal Michel's website is the canonical source for Busy Beaver champions and the History of Previous Champions.

2-Symbol TMs

Rows are blank if no champion has been found which surpasses a smaller size problem. Take also note that the fx(n) used in the lowerbounds represent the Fast Growing Hierarchy.

Runtime Champions Comment
BB(2) 6 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch) Discovered and proven by hand by Tibor Radó
BB(3) 21 1RB1RZ_1LB0RC_1LC1LA (bbch) Proven by Shen Lin
BB(4) 107 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) Discovered and proven by Allen Brady
BB(5) 47,176,870 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) Discovered by Heiner Marxen & Jürgen Buntrock in 1989

Proven by bbchallenge.org in 2024

BB(6) >1015 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch) Discovered by Pavel Kropitz in 2022
BB(7)
BB(8)
BB(9) >101820 1LB0LC_1RC0LI_1LA0RB_1RE1RD_0LF0LI_0RG1LF_1RD1RH_1RZ0RD_1LE1LI (bbch) Designed by Racheline in 2024
BB(10) >104 1LB0LD_0LC0LA_1RC0RA_0LB0LF_1RF1RE_0LG0LJ_0RH1LG_1RE1RI_1RZ0RE_1LF1LJ (bbch) Designed by Racheline in 2024
BB(11)
BB(12) >2124>f13(2) 1RB1LL_0RC1RC_1LD1LG_0RE1LC_1LD1RF_1RE1RI_1RH0LA_---0RF_0RB1LJ_---0LK_0LF1LF_1RZ0LA (bbch) Compilation of a BB(3,4) TM by @Iijil1 in 2024
BB(13) >fω4(70) 1RJ1RH_1RC1RB_1LI0RD_1RC1LE_0LE1LF_1LG1RH_1RB0LF_0RA1LE_1RF1LJ_0LK1RZ_1LL1LK_1LM1LM_0LI0LL (bbch) Discovered by Racheline in 2024
BB(14)
BB(15)
BB(16) >fω+1(229)>g64 Designed by Daniel Nagaj in 2021[1]

References

  1. Shawn Ligocki. 2022. "B(16) > Graham's Number". https://www.sligocki.com/2022/07/11/bb-16-graham.html