Main Page: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 15: Line 15:
| 2-symbol || [[BB(2)]] = 6 || [[BB(3)]] = 21 || [[BB(4)]] = 107 || [[BB(5)]] = 47,176,870 || [[BB(6)]] > <math>10 \uparrow \uparrow 15</math>  
| 2-symbol || [[BB(2)]] = 6 || [[BB(3)]] = 21 || [[BB(4)]] = 107 || [[BB(5)]] = 47,176,870 || [[BB(6)]] > <math>10 \uparrow \uparrow 15</math>  
|-
|-
| 3-symbol  || [[BB(2,3)]] = 38 || [[BB(3,3)]] > 10^17 || [[BB(4,3)]] > 10^14072 || ||
| 3-symbol  || [[BB(2,3)]] = 38 || [[BB(3,3)]] > <math>10^{17}</math>|| [[BB(4,3)]] > <math>10^{14072}</math>|| ||
|-
|-
| 4-symbol  || [[BB(2,4)]] = 3,932,964 || [[BB(3,4)]] > 2(^<sup>15</sup>)5 + 14 || || ||
| 4-symbol  || [[BB(2,4)]] = 3,932,964 || [[BB(3,4)]] > 2(^<sup>15</sup>)5 + 14 || || ||
|-
|-
| 5-symbol  || [[BB(2,5)]] > 6.5 × 10^38033 || || || ||
| 5-symbol  || [[BB(2,5)]] > 6.5 × <math>10^{38033}</math>|| || || ||


|}
|}

Revision as of 09:30, 8 June 2024

The Busy Beaver function BB (called S originally) was introduced by Tibor Radó in 1962 [1] for 2-symbol Turing machines and later generalised[2] to m-symbol Turing machines:

BB(n,m) = Maximum number of steps done by a halting m-symbol Turing machine with n states starting from all-0 memory tape

The busy beaver function is not computable and, few of its values are known:

Small busy beaver values
2-state 3-state 4-state 5-state 6-state
2-symbol BB(2) = 6 BB(3) = 21 BB(4) = 107 BB(5) = 47,176,870 BB(6) >
3-symbol BB(2,3) = 38 BB(3,3) > BB(4,3) >
4-symbol BB(2,4) = 3,932,964 BB(3,4) > 2(^15)5 + 14
5-symbol BB(2,5) > 6.5 ×


Notes

  1. Rado, T. (1962), On Non-Computable Functions. Bell System Technical Journal, 41: 877-884. https://doi.org/10.1002/j.1538-7305.1962.tb00480.x
  2. Brady, Allen H, and the Meaning of Life, 'The Busy Beaver Game and the Meaning of Life', in Rolf Herken (ed.), The Universal Turing Machine: A Half-Century Survey (Oxford, 1990; online edn, Oxford Academic, 31 Oct. 2023), https://doi.org/10.1093/oso/9780198537748.003.0009, accessed 8 June 2024.