General Recursive Function: Difference between revisions
→Champions: Remove the Informal meaning section since I'm not sure it's adding much. |
|||
| Line 60: | Line 60: | ||
!n | !n | ||
!BBµ(n) | !BBµ(n) | ||
!Champion | |||
!Champion | |||
!Champion Found | !Champion Found | ||
!Holdouts Proven | !Holdouts Proven | ||
| Line 67: | Line 66: | ||
|2k+1 | |2k+1 | ||
|≥ k | |≥ k | ||
|<math>K^0[k]</math> | |<math>K^0[k]</math> | ||
|Trivial | |Trivial | ||
| Line 74: | Line 72: | ||
|15 | |15 | ||
|≥ 7 | |≥ 7 | ||
|<math>K^0[7]</math> | |<math>K^0[7]</math> | ||
|Trivial | |Trivial | ||
| Line 81: | Line 78: | ||
|17 | |17 | ||
|≥ 10 | |≥ 10 | ||
|<math>C(Tri, K^0[4])</math> | |<math>C(Tri, K^0[4])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 88: | Line 84: | ||
|19 | |19 | ||
|≥ 16 | |≥ 16 | ||
|<math>C(Square, K^0[4])</math> | |<math>C(Square, K^0[4])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 95: | Line 90: | ||
|21 | |21 | ||
|≥ 25 | |≥ 25 | ||
|<math>C(Square, K^0[5])</math> | |<math>C(Square, K^0[5])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 102: | Line 96: | ||
|23 | |23 | ||
|≥ 36 | |≥ 36 | ||
|<math>C(Square, K^0[6])</math> | |<math>C(Square, K^0[6])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 109: | Line 102: | ||
|25 | |25 | ||
|≥ 256 | |≥ 256 | ||
|<math>C(Rep[Square,2], K^0[3])</math> | |<math>C(Rep[Square,2], K^0[3])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 116: | Line 108: | ||
|27 | |27 | ||
|<math>\ge 2^{16}</math> | |<math>\ge 2^{16}</math> | ||
|<math>C(Rep[Square,2], K^0[4])</math> | |<math>C(Rep[Square,2], K^0[4])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 123: | Line 114: | ||
|29 | |29 | ||
|<math>\ge 2 \uparrow\uparrow 5</math> | |<math>\ge 2 \uparrow\uparrow 5</math> | ||
|<math>C(Rep[Rep[Square,2],0], K^0[3])</math> | |<math>C(Rep[Rep[Square,2],0], K^0[3])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 130: | Line 120: | ||
|31 | |31 | ||
|<math>\ge 2 \uparrow\uparrow 7</math> | |<math>\ge 2 \uparrow\uparrow 7</math> | ||
|<math>C(Rep[Rep[Square,2],0], K^0[4])</math> | |<math>C(Rep[Rep[Square,2],0], K^0[4])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 137: | Line 126: | ||
|33 | |33 | ||
|<math>\ge 2 \uparrow\uparrow 9</math> | |<math>\ge 2 \uparrow\uparrow 9</math> | ||
|<math>C(Rep[Rep[Square,2],0], K^0[5])</math> | |<math>C(Rep[Rep[Square,2],0], K^0[5])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 144: | Line 132: | ||
|35 | |35 | ||
|<math>> 2 \uparrow\uparrow 16</math> | |<math>> 2 \uparrow\uparrow 16</math> | ||
|<math>C(Rep[Rep[Rep[Square,2],0],1], K^0[3])</math> | |<math>C(Rep[Rep[Rep[Square,2],0],1], K^0[3])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 151: | Line 138: | ||
|41 | |41 | ||
|<math>> 2 \uparrow\uparrow\uparrow 16</math> | |<math>> 2 \uparrow\uparrow\uparrow 16</math> | ||
|<math>C(Rep[Rep[Rep[Rep[Square,2],0],1],1], K^0[3])</math> | |<math>C(Rep[Rep[Rep[Rep[Square,2],0],1],1], K^0[3])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| Line 158: | Line 144: | ||
|6k+23 | |6k+23 | ||
|<math>> 2 \uparrow^k 16</math> | |<math>> 2 \uparrow^k 16</math> | ||
|<math>C(Ack[Rep[Rep[Square,2],0],k-1], K^0[3])</math> | |<math>C(Ack[Rep[Rep[Square,2],0],k-1], K^0[3])</math> | ||
|Shawn Ligocki 9 Dec 2025 | |Shawn Ligocki 9 Dec 2025 | ||
| | | | ||
|} | |} | ||
Revision as of 22:49, 9 December 2025
General recursive functions (GRFs), also called µ-recursive functions or partial recursive functions, are the collection of partial functions that are computable. This definition is equivalent using any Turing complete system of computation. See Wikipedia:general recursive function for background.
Historically it was defined as the smallest class of partial functions that is closed under composition, recursion, and minimization, and includes zero, successor, and all projections (see formal definitions below). In the rest of this article, this is the formulation that we focus on exclusively. In this way, it can be considered to be a Turing complete model of computation. In fact, it is one of the oldest Turing complete models, first formalized by Kurt Gödel and Jacques Herbrand in 1933, 3 years before λ-calculus and Turing machines.
BBµ(n) is a Busy Beaver function for GRFs:
where means that is a k-ary GRF and is the "structural size" of f (defined below). In other words, it is the largest number computable via a 0-ary function (a constant) with a limited "program" size. It is more akin to the traditional Sigma score for a Turing machine rather than the Step function in the sense that it maximizes over the produced value, not the number of steps needed to reach that value.
Definition
Primitive Recursive Functions
TODO
Minimization
TODO
Champions
In order to improve readability we define the following macros:
- Plus constant. For any :
- Constant. For any :
- Unary function iteration. For any :
- Ackermann growth (Nested unary function iteration). For any :
- Polygonal numbers. For any :
| n | BBµ(n) | Champion | Champion Found | Holdouts Proven |
|---|---|---|---|---|
| 2k+1 | ≥ k | Trivial | ||
| 15 | ≥ 7 | Trivial | ||
| 17 | ≥ 10 | Shawn Ligocki 9 Dec 2025 | ||
| 19 | ≥ 16 | Shawn Ligocki 9 Dec 2025 | ||
| 21 | ≥ 25 | Shawn Ligocki 9 Dec 2025 | ||
| 23 | ≥ 36 | Shawn Ligocki 9 Dec 2025 | ||
| 25 | ≥ 256 | Shawn Ligocki 9 Dec 2025 | ||
| 27 | Shawn Ligocki 9 Dec 2025 | |||
| 29 | Shawn Ligocki 9 Dec 2025 | |||
| 31 | Shawn Ligocki 9 Dec 2025 | |||
| 33 | Shawn Ligocki 9 Dec 2025 | |||
| 35 | Shawn Ligocki 9 Dec 2025 | |||
| 41 | Shawn Ligocki 9 Dec 2025 | |||
| 6k+23 | Shawn Ligocki 9 Dec 2025 |