Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
m :D
Int-y1 (talk | contribs)
m math format
Line 1: Line 1:
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l}
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l}
   c(2k)  & = &  k \\
   c(2k)  & = &  k \\
   c(2k+1) & = & 3k+2 \\
   c(2k+1) & = & 3k+2
\end{array}</math>
\end{array}</math>


Line 19: Line 19:
   M(3k)  & \xrightarrow{5k^2+19k+15} & M(5k+6) \\
   M(3k)  & \xrightarrow{5k^2+19k+15} & M(5k+6) \\
   M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\
   M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\
   M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty \\
   M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty
\end{array}</math>
\end{array}</math>


Line 33: Line 33:
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & b+1) & \to & C(3n,b) \\
   C(2n,  & b+1) & \to & C(3n,b) \\
   C(2n+1, & b)  & \to & C(3n+1,b+2) \\
   C(2n+1, & b)  & \to & C(3n+1,b+2)
\end{array}</math>
\end{array}</math>


Line 41: Line 41:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
   H(2n)  & = & 3n &\text{(even transition)} \\
   H(2n)  & = & 3n &\text{(even transition)} \\
   H(2n+1) & = & 3n+1&\text{(odd transition)} \\
   H(2n+1) & = & 3n+1&\text{(odd transition)}
\end{array}</math>
\end{array}</math>
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below:
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
  \vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots \\
  \vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots
\end{array}
\end{array}
</math>
</math>
Line 56: Line 56:
   K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+3) & \to & K\Bigl(\frac{3^{k+3} +  1}{2}\Bigr) \\
   K(4k+3) & \to & K\Bigl(\frac{3^{k+3} +  1}{2}\Bigr)
\end{array}</math>
\end{array}</math>



Revision as of 07:27, 8 October 2025

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:c(2k)=kc(2k+1)=3k+2

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Examples

5-state busy beaver winner

Consider the 5-state busy beaver winner and the generalized configuration:

M(n)=0<A1n0Pascal Michel showed that:

0<A0=M(0)M(3k)5k2+19k+15M(5k+6)M(3k+1)5k2+25k+27M(5k+9)M(3k+2)6k+1201Z>01(001)k+110

Starting on a blank tape M(0), these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra and the generalized configuration:

C(a,b)=0<A203(a2)3b20 Daniel Yuan showed that:0A>020C(3,0)C(2n,0)Halt(9n6)C(2n,b+1)C(3n,b)C(2n+1,b)C(3n+1,b+2)

Where Halt(n) is a halting configuration with n non-zero symbols on the tape.

Starting from C(3,0), this simulates a pseudo-random walk along the b parameter, increasing it by 2 every time a is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function H(2n)=3n(even transition)H(2n+1)=3n+1(odd transition) to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below: 0..3O4E6E9O13O19O28E42E63O

Exponential Collatz

Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:K(n):=010n1105C>0Shawn Ligocki showed that: 0A>045K(5)K(4k)Halt(3k+3112)K(4k+1)K(3k+3112)K(4k+2)K(3k+3112)K(4k+3)K(3k+3+12)

Demonstrating Collatz-like behavior with exponential piecewise component functions.

Starting from config K(5), these rules iterate 15 times before reaching the halt config leaving over 1015 non-zero symbols on the tape.[3]

References