Collatz-like: Difference between revisions
Tag: Rollback |
m :D |
||
Line 13: | Line 13: | ||
Consider the [[5-state busy beaver winner]] and the generalized configuration: | Consider the [[5-state busy beaver winner]] and the generalized configuration: | ||
<math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that: | <math display="block">M(n) = 0^\infty \; \textrm{<}\text{A} \; 1^n \; 0^\infty</math>Pascal Michel showed that: | ||
<math display="block">\begin{array}{lcl} | <math display="block">\begin{array}{lcl} | ||
0^\infty \; \textrm{<A} \; 0^\infty & = & M(0) \\ | 0^\infty \; \textrm{<}\textrm{A} \; 0^\infty & = & M(0) \\ | ||
M(3k) & \xrightarrow{ | M(3k) & \xrightarrow{5k^2+19k+15} & M(5k+6) \\ | ||
M(3k+1) & \xrightarrow{ | M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\ | ||
M(3k+2) & \xrightarrow{6k +12} & 0^\infty | M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty \\ | ||
\end{array}</math> | \end{array}</math> | ||
Line 25: | Line 25: | ||
=== Hydra === | === Hydra === | ||
Consider [[Hydra]] | Consider [[Hydra]] and the generalized configuration: | ||
<math display="block">C(a, b) = 0^\infty\;\textrm{<A}\;2\;0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math> | <math display="block">C(a, b) = 0^\infty\;\textrm{<}\textrm{A}\;2\;0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math> | ||
Daniel Yuan showed that:<math display="block">\begin{array}{l} | Daniel Yuan showed that:<math display="block">\begin{array}{l} | ||
\\ | \\ | ||
0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{20} & C(3, 0) \\ | 0^\infty \; \textrm{A}\textrm{>} \; 0^\infty & & \xrightarrow{20} & C(3, 0) \\ | ||
C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | ||
C(2n, & b+1) & \to & C(3n, | C(2n, & b+1) & \to & C(3n,b) \\ | ||
C(2n+1, & b) & \to & C(3n+1, | C(2n+1, & b) & \to & C(3n+1,b+2) \\ | ||
\end{array}</math> | \end{array}</math> | ||
Where <math>\ | Where <math>\text{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape. | ||
Starting from <math>C(3, 0)</math>, this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function | Starting from <math>C(3, 0)</math>, this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function | ||
Line 49: | Line 49: | ||
</math> | </math> | ||
=== Exponential Collatz === | === Exponential Collatz === | ||
Consider the machine {{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}, discovered by Pavel Kropitz in May 2022, and the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that: | Consider the machine {{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}, discovered by Pavel Kropitz in May 2022, and the general configuration:<math display="block">K(n):=0^\infty\;1\;0^n\;11\;0^5\;\textrm{C}\textrm{>}\;0^\infty</math>Shawn Ligocki showed that: | ||
<math display="block">\begin{array}{l} | <math display="block">\begin{array}{l} | ||
\\ | \\ | ||
0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\ | 0^\infty\;\textrm{A}\textrm{>}\;0^\infty&\xrightarrow{45}&K(5) \\ | ||
K(4k) & \to & \ | K(4k) & \to & \operatorname{Halt}\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ |
Latest revision as of 23:00, 7 October 2025
A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:
A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.
Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Examples
5-state busy beaver winner
Consider the 5-state busy beaver winner and the generalized configuration:
Pascal Michel showed that:
Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]
Hydra
Consider Hydra and the generalized configuration:
Daniel Yuan showed that:
Where is a halting configuration with non-zero symbols on the tape.
Starting from , this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below:
Exponential Collatz
Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE
(bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:Shawn Ligocki showed that:
Demonstrating Collatz-like behavior with exponential piecewise component functions.
Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]
References
- ↑ Pascal Michel's Analysis of the BB(5, 2) Champion
- ↑ Shawn Ligocki. BB(2, 5) is Hard (Hydra). 10 May 2024.
- ↑ Shawn Ligocki. BB(6, 2) > 10↑↑15. 21 Jun 2022.