Mother of Giants: Difference between revisions
Jump to navigation
Jump to search
(Completed overview table) |
(Added analysis of 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RD0LA) |
||
Line 30: | Line 30: | ||
|Quasihalts after about <math>10^{4\,079}</math> steps.<ref name=":0"/> | |Quasihalts after about <math>10^{4\,079}</math> steps.<ref name=":0"/> | ||
|} | |} | ||
==1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RD0LA== | |||
Quasihalts after about <math>10^{4\,079}</math> steps. Analysis by [[User:Sligocki|Shawn Ligocki]]: | |||
<pre> | |||
let | |||
* G(n, m) = 0^inf <E 0^n 1^m 0^inf | |||
then | |||
* G(4k+1, m+2) -> G(7k+ 8, m+1) | |||
* G(4k+2, m+2) -> G(7k+ 6, m+1) | |||
* G(4k+3, m+2) -> G(7k+14, m) | |||
* G(4k+4, m+2) -> G(7k+12, m) | |||
* G(n, 1) -> G(1, n+3) | |||
* G(n, 0) -> Spin Out | |||
and for completeness (although we can never reach G(0, m) by applying these rules): | |||
* G(0, m+2) -> G(7, m) | |||
and finally, at step 4 we are in G(1, 1). | |||
As before, iterating these relations leads to a sort of "2-stage" Collatz-like behavior: | |||
* G(1, 1) | |||
* G(1, 4) | |||
** G(8, 3) | |||
** G(19, 1) | |||
* G(1, 22) | |||
** G(8, 21) | |||
** G(19, 19) | |||
** G(42, 17) | |||
** G(76, 16) | |||
** G(138, 14) | |||
** G(244, 13) | |||
** G(432, 11) | |||
** G(761, 9) | |||
** G(1338, 8) | |||
** G(2344, 7) | |||
** G(4107, 5) | |||
** G(7196, 3) | |||
** G(12598, 1) | |||
* G(1, 12601) | |||
** G(8, 12600) | |||
** G(19, 12598) | |||
... | |||
** G(1876213840710521598391379605525487806521622108810778432527722867392307436766159159315654305525834552560172561652032118063458627370309987185176524224005388698700446967268349729419384342385261686600728253800107702390205303703109911013679543376784994065131479319486732208008605302317371513424001996538578227420511014587912085639154043098929108973505716971259211164084851171147584492195641828442403195419357046301200977722765015982127629619366127227507539382553155352425623517192820793588314301840633848042122283284527197514334793445174332133304252240350530614310123013246222482691057522680607329801073658994807307108563977792602674937915145127717601763644562450026084468482011253492787037376937107425102889344711991496275353115166560777221320784075353693443765935139868061950972649919070516499077698769361018135243624369764825602272332642411663431603264357025025605181511270774475664657506683051463739351416893336641567178700404415824985611548629898352736718482963400988142981278524634899806152389037871669098549259903261356156435822856442997107359268004720245053216395652317114834047445010107196444627059271727548915696497640596592913994488623239627564677236759609661035594688933526335837056500047460869283130575904150442715133699885285716657627307991036082003072952095275483832305837708309180971389464320818551264951669392266140549796563778468321806984538951296296552524443477377012382914243026356951988052699080778947387243967930857325467739175240274180541636551276654811833607927610176824006302410755537315645723335878886137585589884378754363497710819886157044977428594424751379562193743624891055837449756993817095474523342307530343858042369299814007843193782820421402610428397007107529266963233646286254595510683332294534735691214261351756352969840115522216379692717569241523917906031879093475856928361266209321993314289669996574460021380115709710519270157850694498748462253621222466800698577194648206832226152375452456786050873778773714111576650409478390819793529657854689649591879416169292957147115001498762307255727596635383777744252057, 0) | |||
* Spin Out | |||
</pre> | |||
See https://www.sligocki.com/2022/04/03/mother-of-giants.html for details. | See https://www.sligocki.com/2022/04/03/mother-of-giants.html for details. | ||
Revision as of 17:00, 28 August 2025
Does the Mother of Giants quasihalt? If so, how many steps does it take to quasihalt?
The Mother of Giants is a collection of adjacent Turing machines, some of which are Cryptids in the 5-state Beeping Busy Beaver problem that probviously quasihalt. They must all be proven to halt or not if we want to solve BBB(5).
The TMs are all the "children" of 1RB1LE_0LC0LB_0LD1LC_1RD1RA_---0LA
where children means all the TMs created by filling in the undefined E0
transition.
Overview of the children
An overview of the 8 most interesting children.
Machine | Status |
---|---|
1RB1LE_0LC0LB_0LD1LC_1RD1RA_1RC0LA (bbch) and 1RB1LE_0LC0LB_0LD1LC_1RD1RA_1LC0LA (bbch)
|
Probviously quasihalting Cryptids |
1RB1LE_0LC0LB_0LD1LC_1RD1RA_1LA0LA (bbch)
|
Probviously quasihalting Cryptid |
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0LC0LA (bbch)
|
Probviously quasihalting Cryptid |
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch) (current champion) and 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0LD0LA (bbch)
|
Quasihalt after steps.[1] |
1RB1LE_0LC0LB_0LD1LC_1RD1RA_1RD0LA (bbch)
|
Quasihalts after about steps.[2] |
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RD0LA (bbch)
|
Quasihalts after about steps.[1] |
1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RD0LA
Quasihalts after about steps. Analysis by Shawn Ligocki:
let * G(n, m) = 0^inf <E 0^n 1^m 0^inf then * G(4k+1, m+2) -> G(7k+ 8, m+1) * G(4k+2, m+2) -> G(7k+ 6, m+1) * G(4k+3, m+2) -> G(7k+14, m) * G(4k+4, m+2) -> G(7k+12, m) * G(n, 1) -> G(1, n+3) * G(n, 0) -> Spin Out and for completeness (although we can never reach G(0, m) by applying these rules): * G(0, m+2) -> G(7, m) and finally, at step 4 we are in G(1, 1). As before, iterating these relations leads to a sort of "2-stage" Collatz-like behavior: * G(1, 1) * G(1, 4) ** G(8, 3) ** G(19, 1) * G(1, 22) ** G(8, 21) ** G(19, 19) ** G(42, 17) ** G(76, 16) ** G(138, 14) ** G(244, 13) ** G(432, 11) ** G(761, 9) ** G(1338, 8) ** G(2344, 7) ** G(4107, 5) ** G(7196, 3) ** G(12598, 1) * G(1, 12601) ** G(8, 12600) ** G(19, 12598) ... ** G(1876213840710521598391379605525487806521622108810778432527722867392307436766159159315654305525834552560172561652032118063458627370309987185176524224005388698700446967268349729419384342385261686600728253800107702390205303703109911013679543376784994065131479319486732208008605302317371513424001996538578227420511014587912085639154043098929108973505716971259211164084851171147584492195641828442403195419357046301200977722765015982127629619366127227507539382553155352425623517192820793588314301840633848042122283284527197514334793445174332133304252240350530614310123013246222482691057522680607329801073658994807307108563977792602674937915145127717601763644562450026084468482011253492787037376937107425102889344711991496275353115166560777221320784075353693443765935139868061950972649919070516499077698769361018135243624369764825602272332642411663431603264357025025605181511270774475664657506683051463739351416893336641567178700404415824985611548629898352736718482963400988142981278524634899806152389037871669098549259903261356156435822856442997107359268004720245053216395652317114834047445010107196444627059271727548915696497640596592913994488623239627564677236759609661035594688933526335837056500047460869283130575904150442715133699885285716657627307991036082003072952095275483832305837708309180971389464320818551264951669392266140549796563778468321806984538951296296552524443477377012382914243026356951988052699080778947387243967930857325467739175240274180541636551276654811833607927610176824006302410755537315645723335878886137585589884378754363497710819886157044977428594424751379562193743624891055837449756993817095474523342307530343858042369299814007843193782820421402610428397007107529266963233646286254595510683332294534735691214261351756352969840115522216379692717569241523917906031879093475856928361266209321993314289669996574460021380115709710519270157850694498748462253621222466800698577194648206832226152375452456786050873778773714111576650409478390819793529657854689649591879416169292957147115001498762307255727596635383777744252057, 0) * Spin Out
See https://www.sligocki.com/2022/04/03/mother-of-giants.html for details.