User:Polygon/Collection of BB Champions: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Completed list of Champions for Oracle Busy Beaver Lambda)
(Used more efficient formatting)
Line 10: Line 10:
|-
|-
|BB(1)
|BB(1)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ---|halt}}
|{{TM|1RZ---|halt}}
|-
|-
|[[BB(2)]]
|[[BB(2)]]
|<math> 6 </math>
|<math>6</math>
|{{TM|1RB1LB_1LA1RZ|halt}} {{TM|1RB0LB_1LA1RZ|halt}} {{TM|1RB1RZ_1LB1LA|halt}} {{TM|1RB1RZ_0LB1LA|halt}} {{TM|0RB1RZ_1LA1RB|halt}}
|{{TM|1RB1LB_1LA1RZ|halt}} {{TM|1RB0LB_1LA1RZ|halt}} {{TM|1RB1RZ_1LB1LA|halt}} {{TM|1RB1RZ_0LB1LA|halt}} {{TM|0RB1RZ_1LA1RB|halt}}
|-
|-
|[[BB(3)]]
|[[BB(3)]]
|<math> 21 </math>
|<math>21</math>
|{{TM|1RB1RZ_1LB0RC_1LC1LA|halt}}
|{{TM|1RB1RZ_1LB0RC_1LC1LA|halt}}
|-
|-
|[[BB(4)]]
|[[BB(4)]]
|<math> 107 </math>
|<math>107</math>
|{{TM|1RB1LB_1LA0LC_1RZ1LD_1RD0RA|halt}}
|{{TM|1RB1LB_1LA0LC_1RZ1LD_1RD0RA|halt}}
|-
|-
|[[BB(5)]]
|[[BB(5)]]
|<math> 47\,176\,870 </math>
|<math>47\,176\,870</math>
|{{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}
|{{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}
|-
|-
|[[BB(6)]]
|[[BB(6)]]
|<math> > 2\uparrow\uparrow 2\uparrow\uparrow 2\uparrow\uparrow 10 </math>
|<math>> 2\uparrow\uparrow 2\uparrow\uparrow 2\uparrow\uparrow 10</math>
|{{TM|1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE|halt}}
|{{TM|1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE|halt}}
|-
|-
Line 42: Line 42:
|-
|-
|BB(9)
|BB(9)
|<math> > f_\omega(f_9(2)) </math>
|<math>> f_\omega(f_9(2))</math>
|{{TM|1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH|halt}}
|{{TM|1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH|halt}}
|-
|-
|BB(10)
|BB(10)
|<math> > f_\omega^2(25) </math>
|<math>> f_\omega^2(25)</math>
|{{TM|1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ|halt}}
|{{TM|1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ|halt}}
|-
|-
|BB(11)
|BB(11)
|<math> > f_\omega^2(2 \uparrow\uparrow 12) > f_\omega^2(f_3(9)) </math>
|<math>> f_\omega^2(2 \uparrow\uparrow 12) > f_\omega^2(f_3(9))</math>
|{{TM|1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE|halt}}
|{{TM|1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE|halt}}
|-
|-
|BB(12)
|BB(12)
|<math> > f_\omega^4(2 \uparrow\uparrow\uparrow 4-3) > f_\omega^4(f_4(2)) </math>
|<math>> f_\omega^4(2 \uparrow\uparrow\uparrow 4-3) > f_\omega^4(f_4(2))</math>
|{{TM|0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL|halt}}
|{{TM|0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL|halt}}
|-
|-
|BB(14)
|BB(14)
|<math> > f_{\omega + 1}(65\,536) > g_{64} </math>
|<math>> f_{\omega + 1}(65\,536) > g_{64}</math>
|{{TM|1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ---|halt}}
|{{TM|1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ---|halt}}
|-
|-
|BB(15)
|BB(15)
|<math> > f_{\omega + 1}(f_\omega(10^{57})) </math>
|<math>> f_{\omega + 1}(f_\omega(10^{57}))</math>
|{{TM|0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN|halt}}
|{{TM|0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN|halt}}
|-
|-
|BB(16)
|BB(16)
|<math> > f_{\omega + 1}^2(10^{10^{57}}) </math>
|<math>> f_{\omega + 1}^2(10^{10^{57}})</math>
|
|
|-
|-
|BB(18)
|BB(18)
|<math> > f_{\omega + 2}(f_{\omega + 1}^3(f_{\omega}^2(60))) </math>
|<math>> f_{\omega + 2}(f_{\omega + 1}^3(f_{\omega}^2(60)))</math>
|
|
|-
|-
|BB(20)
|BB(20)
|<math> > f_{\omega + 2}^2(21) </math>
|<math>> f_{\omega + 2}^2(21)</math>
|
|
|-
|-
|BB(21)
|BB(21)
|<math> > f_{\omega^2}^2(4 \uparrow\uparrow 341) </math>
|<math>> f_{\omega^2}^2(4 \uparrow\uparrow 341)</math>
|
|
|-
|-
|BB(40)
|BB(40)
|<math> > f_{\omega^\omega}(75\,500) </math>
|<math>> f_{\omega^\omega}(75\,500)</math>
|
|
|-
|-
|BB(41)
|BB(41)
|<math> > f_{\omega^\omega}^4(32) </math>
|<math>> f_{\omega^\omega}^4(32)</math>
|
|
|-
|-
|BB(51)
|BB(51)
|<math> > f_{\varepsilon_0 + 1}(8) </math>
|<math>> f_{\varepsilon_0 + 1}(8)</math>
|
|
|}
|}
Line 101: Line 101:
|-
|-
|BB(1,3)
|BB(1,3)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ------|halt}}
|{{TM|1RZ------|halt}}
|-
|-
|[[BB(2,3)]]
|[[BB(2,3)]]
|<math> 38 </math>
|<math>38</math>
|{{TM|1RB2LB1RZ_2LA2RB1LB|halt}}
|{{TM|1RB2LB1RZ_2LA2RB1LB|halt}}
|-
|-
|[[BB(3,3)]]
|[[BB(3,3)]]
|<math> \geq 119\,112\,334\,170\,342\,541 > 10^{17} </math>
|<math>\geq 119\,112\,334\,170\,342\,541 > 10^{17}</math>
|{{TM|0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC|halt}}
|{{TM|0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC|halt}}
|-
|-
|[[BB(4,3)]]
|[[BB(4,3)]]
|<math> > 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}-1)</math>
|<math>> 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}-1)</math>
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|}
|}
Line 124: Line 124:
|-
|-
|BB(1,4)
|BB(1,4)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ---------|halt}}
|{{TM|1RZ---------|halt}}
|-
|-
|[[BB(2,4)]]
|[[BB(2,4)]]
|<math> 3\,932\,964 </math>
|<math>3\,932\,964</math>
|{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}
|{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}
|-
|-
|BB(3,4)
|BB(3,4)
|<math> > 2 \uparrow^{15} 5 </math>
|<math>> 2 \uparrow^{15} 5</math>
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|}
|}
Line 143: Line 143:
|-
|-
|BB(1,5)
|BB(1,5)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ------------|halt}}
|{{TM|1RZ------------|halt}}
|-
|-
|[[BB(2,5)]]
|[[BB(2,5)]]
|<math> > 10^{10^{10^{3\,314\,360}}} </math>
|<math>> 10^{10^{10^{3\,314\,360}}}</math>
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|-
|-
|BB(3,5)
|BB(3,5)
|<math> > f_\omega(2 \uparrow^{15} 5) > f_\omega^2(15) </math>
|<math>> f_\omega(2 \uparrow^{15} 5) > f_\omega^2(15)</math>
|{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}}
|{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}}
|}
|}
Line 162: Line 162:
|-
|-
|BB(1,6)
|BB(1,6)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ---------------|halt}}
|{{TM|1RZ---------------|halt}}
|-
|-
|BB(2,6)
|BB(2,6)
|<math> > 10 \uparrow\uparrow 10 \uparrow\uparrow 10^{10^{115}} </math>
|<math>> 10 \uparrow\uparrow 10 \uparrow\uparrow 10^{10^{115}}</math>
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}}
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}}
|}
|}
Line 178: Line 178:
|-
|-
|Σ(1)
|Σ(1)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ---|halt}}
|{{TM|1RZ---|halt}}
|-
|-
|Σ(2)
|Σ(2)
|<math> 4 </math>
|<math>4</math>
|{{TM|1RB1LB_1LA1RZ|halt}}
|{{TM|1RB1LB_1LA1RZ|halt}}
|-
|-
|Σ(3)
|Σ(3)
|<math> 6 </math>
|<math>6</math>
|{{TM|1RB1RZ_0RC1RB_1LC1LA|halt}} {{TM|1RB1RC_1LC1RZ_1RA0LB|halt}} {{TM|1RB1LC_1LA1RB_1LB1RZ|halt}} {{TM|1RB1RA_1LC1RZ_1RA1LB|halt}} {{TM|1RB1LC_1RC1RZ_1LA0LB|halt}}
|{{TM|1RB1RZ_0RC1RB_1LC1LA|halt}} {{TM|1RB1RC_1LC1RZ_1RA0LB|halt}} {{TM|1RB1LC_1LA1RB_1LB1RZ|halt}} {{TM|1RB1RA_1LC1RZ_1RA1LB|halt}} {{TM|1RB1LC_1RC1RZ_1LA0LB|halt}}
|-
|-
|Σ(4)
|Σ(4)
|<math> 13 </math>
|<math>13</math>
|{{TM|1RB1LB_1LA0LC_1RZ1LD_1RD0RA|halt}} {{TM|1RB0RC_1LA1RA_1RZ1RD_1LD0LB|halt}}
|{{TM|1RB1LB_1LA0LC_1RZ1LD_1RD0RA|halt}} {{TM|1RB0RC_1LA1RA_1RZ1RD_1LD0LB|halt}}
|-
|-
|Σ(5)
|Σ(5)
|<math> 4098 </math>
|<math>4098</math>
|{{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}} {{TM|1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC|halt}}
|{{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}} {{TM|1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC|halt}}
|-
|-
|Σ(6)
|Σ(6)
|<math> > 2\uparrow\uparrow 2\uparrow\uparrow 2\uparrow\uparrow 10 </math>
|<math>> 2\uparrow\uparrow 2\uparrow\uparrow 2\uparrow\uparrow 10</math>
|{{TM|1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE|halt}}
|{{TM|1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE|halt}}
|-
|-
Line 213: Line 213:
|-
|-
|Σ(1,3)
|Σ(1,3)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ------|halt}}
|{{TM|1RZ------|halt}}
|-
|-
|Σ(2,3)
|Σ(2,3)
|<math> 9 </math>
|<math>9</math>
|{{TM|1RB2LB1RZ_2LA2RB1LB|halt}}
|{{TM|1RB2LB1RZ_2LA2RB1LB|halt}}
|-
|-
|Σ(3,3)
|Σ(3,3)
|<math> \geq 374\,676\,383 </math>
|<math>\geq 374\,676\,383</math>
|{{TM|0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC|halt}}
|{{TM|0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC|halt}}
|-
|-
|Σ(4,3)
|Σ(4,3)
|<math> > 2 \uparrow\uparrow\uparrow 2^{2^{32}}</math>
|<math>> 2 \uparrow\uparrow\uparrow 2^{2^{32}}</math>
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|}
|}
Line 236: Line 236:
|-
|-
|Σ(1,4)
|Σ(1,4)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ---------|halt}}
|{{TM|1RZ---------|halt}}
|-
|-
|Σ(2,4)
|Σ(2,4)
|<math> 2050 </math>
|<math>2050</math>
|{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}
|{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}
|}
|}
Line 251: Line 251:
|-
|-
|Σ(1,5)
|Σ(1,5)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ------------|halt}}
|{{TM|1RZ------------|halt}}
|-
|-
|Σ(2,5)
|Σ(2,5)
|<math> > 10^{10^{10^{3\,314\,360}}} </math>
|<math>> 10^{10^{10^{3\,314\,360}}}</math>
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|}
|}
Line 268: Line 268:
|-
|-
|BBB(1)
|BBB(1)
|<math> 1 </math>
|<math>1</math>
|
|
|-
|-
|BBB(2)
|BBB(2)
|<math> 6 </math>
|<math>6</math>
|
|
|-
|-
|BBB(3)
|BBB(3)
|<math> 55 </math>
|<math>55</math>
|{{TM|1LB0RB_1RA0LC_1RC1RA}}
|{{TM|1LB0RB_1RA0LC_1RC1RA}}
|-
|-
|BBB(4)
|BBB(4)
|<math> \geq 32\,779\,478 </math>
|<math>\geq 32\,779\,478</math>
|
|
|-
|-
|BBB(5)
|BBB(5)
|<math> \geq 10^{14006} </math>
|<math>\geq 10^{14006}</math>
|
|
|}
|}
Line 303: Line 303:
|-
|-
|BBB(3,3)
|BBB(3,3)
|<math> \geq 10 \uparrow\uparrow 6 </math>
|<math>\geq 10 \uparrow\uparrow 6</math>
|
|
|}
|}
Line 317: Line 317:
|-
|-
|num(1)
|num(1)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RZ---|halt}}
|{{TM|1RZ---|halt}}
|-
|-
|num(2)
|num(2)
|<math> 4 </math>
|<math>4</math>
|{{TM|1RB1LB_1LA1LZ|halt}}
|{{TM|1RB1LB_1LA1LZ|halt}}
|-
|-
|num(3)
|num(3)
|<math> 6 </math>
|<math>6</math>
|{{TM|1RB1LC_1RC1LZ_1LA0LB|halt}}
|{{TM|1RB1LC_1RC1LZ_1LA0LB|halt}}
|-
|-
|num(4)
|num(4)
|<math> 12 </math>
|<math>12</math>
|{{TM|1RB0LA_1RC1LB_1LB1RD_1RZ0RA|halt}}
|{{TM|1RB0LA_1RC1LB_1LB1RD_1RZ0RA|halt}}
|-
|-
|num(5)
|num(5)
|<math> 165 </math>
|<math>165</math>
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}}
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}}
|}
|}
Line 345: Line 345:
|-
|-
|BBi(1)
|BBi(1)
|<math> 1 </math>
|<math>1</math>
|{{TM|0RH|halt}} {{TM|1RH---|halt}}
|{{TM|0RH|halt}} {{TM|1RH---|halt}}
|-
|-
|BBi(2)
|BBi(2)
|<math> 3 </math>
|<math>3</math>
|{{TM|0RB---_1LA---|halt}}
|{{TM|0RB---_1LA---|halt}}
|-
|-
|BBi(3)
|BBi(3)
|<math> 5 </math>
|<math>5</math>
|{{TM|1RB1LB_1LA---|halt}}
|{{TM|1RB1LB_1LA---|halt}}
|-
|-
|BBi(4)
|BBi(4)
|<math> 16 </math>
|<math>16</math>
|{{TM|1RB---_0RC---_1LC0LA|halt}}
|{{TM|1RB---_0RC---_1LC0LA|halt}}
|-
|-
|BBi(5)
|BBi(5)
|<math> 37 </math>
|<math>37</math>
|{{TM|1RB2LB---_2LA2RB1LB|halt}}
|{{TM|1RB2LB---_2LA2RB1LB|halt}}
|-
|-
|BBi(6)
|BBi(6)
|<math> 123 </math>
|<math>123</math>
|{{TM|1RB3LA1RA0LA_2LA------3RA|halt}}
|{{TM|1RB3LA1RA0LA_2LA------3RA|halt}}
|-
|-
|BBi(7)
|BBi(7)
|<math> 3\,932\,963 </math>
|<math>3\,932\,963</math>
|{{TM|1RB2LA1RA1RA_1LB1LA3RB---|halt}} {{TM|1RB2LA1RA_1LC1LA2RB_---1LA---|halt}}
|{{TM|1RB2LA1RA1RA_1LB1LA3RB---|halt}} {{TM|1RB2LA1RA_1LC1LA2RB_---1LA---|halt}}
|-
|-
|BBi(8)
|BBi(8)
|<math> >6.889 \times 10^{1565} </math>
|<math>>6.889 \times 10^{1565}</math>
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|}
|}
Line 384: Line 384:
|-
|-
|Σi(1)
|Σi(1)
|<math> 1 </math>
|<math>1</math>
|{{TM|1RH---|halt}}
|{{TM|1RH---|halt}}
|-
|-
|Σi(2)
|Σi(2)
|<math> 2 </math>
|<math>2</math>
|{{TM|1RB---_1LA---|halt}}
|{{TM|1RB---_1LA---|halt}}
|-
|-
|Σi(3)
|Σi(3)
|<math> 4 </math>
|<math>4</math>
|{{TM|1RB1LB_1LA---|halt}}
|{{TM|1RB1LB_1LA---|halt}}
|-
|-
|Σi(4)
|Σi(4)
|<math> 5 </math>
|<math>5</math>
|{{TM|1RB0LB---_1LA2RA---|halt}}
|{{TM|1RB0LB---_1LA2RA---|halt}}
|-
|-
|Σi(5)
|Σi(5)
|<math> 9 </math>
|<math>9</math>
|{{TM|1RB2LB---_2LA2RB1LB|halt}}
|{{TM|1RB2LB---_2LA2RB1LB|halt}}
|-
|-
|Σi(6)
|Σi(6)
|<math> 14 </math>
|<math>14</math>
|{{TM|1RB3LA1RA0LA_2LA------3RA|halt}}
|{{TM|1RB3LA1RA0LA_2LA------3RA|halt}}
|-
|-
|Σi(7)
|Σi(7)
|<math> 2050 </math>
|<math>2050</math>
|{{TM|1RB2LA1RA1RA_1LB1LA3RB---|halt}} {{TM|1RB2LA1RA_1LC1LA2RB_---1LA---|halt}}
|{{TM|1RB2LA1RA1RA_1LB1LA3RB---|halt}} {{TM|1RB2LA1RA_1LC1LA2RB_---1LA---|halt}}
|-
|-
|Σi(8)
|Σi(8)
|<math> >1.355 \times 10^{783} </math>
|<math>>1.355 \times 10^{783}</math>
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|}
|}
Line 429: Line 429:
|-
|-
|BB<sub>rev</sub>(2)
|BB<sub>rev</sub>(2)
|<math> 6 </math>
|<math>6</math>
|{{TM|0RB1RZ_1LA1RB|halt}}
|{{TM|0RB1RZ_1LA1RB|halt}}
|-
|-
|BB<sub>rev</sub>(3)
|BB<sub>rev</sub>(3)
|<math> 17 </math>
|<math>17</math>
|{{TM|0RB1RZ_0LC1RA_1RB1LC|halt}}
|{{TM|0RB1RZ_0LC1RA_1RB1LC|halt}}
|-
|-
|BB<sub>rev</sub>(4)
|BB<sub>rev</sub>(4)
|<math> 48 </math>
|<math>48</math>
|{{TM|1RB0LD_0LC0RB_1LA1LD_1LC1RZ|halt}}
|{{TM|1RB0LD_0LC0RB_1LA1LD_1LC1RZ|halt}}
|-
|-
|BB<sub>rev</sub>(5)
|BB<sub>rev</sub>(5)
|<math> 388 </math>
|<math>388</math>
|{{TM|1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA|halt}}
|{{TM|1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA|halt}}
|-
|-
|BB<sub>rev</sub>(6)
|BB<sub>rev</sub>(6)
|<math> \geq 537\,556 </math>
|<math>\geq 537\,556</math>
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|-
|-
|BB<sub>rev</sub>(7)
|BB<sub>rev</sub>(7)
|<math> >10^{19} </math>
|<math>>10^{19}</math>
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}}
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}}
|}
|}
Line 465: Line 465:
|-
|-
|Σ<sub>rev</sub>(2)
|Σ<sub>rev</sub>(2)
|<math> \geq 2 </math>
|<math>\geq 2</math>
|{{TM|0RB1RZ_1LA1RB|halt}}
|{{TM|0RB1RZ_1LA1RB|halt}}
|-
|-
|Σ<sub>rev</sub>(3)
|Σ<sub>rev</sub>(3)
|<math> \geq 4 </math>
|<math>\geq 4</math>
|{{TM|0RB1RZ_0LC1RA_1RB1LC|halt}}
|{{TM|0RB1RZ_0LC1RA_1RB1LC|halt}}
|-
|-
|Σ<sub>rev</sub>(4)
|Σ<sub>rev</sub>(4)
|<math> \geq 6 </math>
|<math>\geq 6</math>
|{{TM|1RB0LD_0LC0RB_1LA1LD_1LC1RZ|halt}}
|{{TM|1RB0LD_0LC0RB_1LA1LD_1LC1RZ|halt}}
|-
|-
|Σ<sub>rev</sub>(5)
|Σ<sub>rev</sub>(5)
|<math> \geq 16 </math>
|<math>\geq 16</math>
|{{TM|1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA|halt}}
|{{TM|1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA|halt}}
|-
|-
|Σ<sub>rev</sub>(6)
|Σ<sub>rev</sub>(6)
|<math> \geq 1161 </math>
|<math>\geq 1161</math>
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|}
|}
Line 504: Line 504:
|-
|-
|BBS(3,2)
|BBS(3,2)
|<math> 101 </math>
|<math>101</math>
|{{TM|1RB1LB_0RC0LA_1LC0LA}}
|{{TM|1RB1LB_0RC0LA_1LC0LA}}
|-
|-
|BBS(4,2)
|BBS(4,2)
|<math> \geq 119\,120\,230\,102 </math>
|<math>\geq 119\,120\,230\,102</math>
|{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}}
|{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}}
|}
|}
Line 525: Line 525:
|-
|-
|BBS(2,4)
|BBS(2,4)
|<math> \geq 293\,225\,660\,896 </math>
|<math>\geq 293\,225\,660\,896</math>
|{{TM|1RB2LA0RA3LA_1LA1LB3RB1RA}}
|{{TM|1RB2LA0RA3LA_1LA1LB3RB1RA}}
|}
|}
Line 545: Line 545:
|-
|-
|BBP(3,2)
|BBP(3,2)
|<math> 92 </math>
|<math>92</math>
|{{TM|1RB0LA_0RC1LA_1LC0RB}}
|{{TM|1RB0LA_0RC1LA_1LC0RB}}
|-
|-
|BBP(4,2)
|BBP(4,2)
|<math> \geq 212\,081\,736 </math>
|<math>\geq 212\,081\,736</math>
|{{TM|1RB0LA_0RC1RD_1LD0RB_1LA1RB}}
|{{TM|1RB0LA_0RC1RD_1LD0RB_1LA1RB}}
|}
|}
Line 566: Line 566:
|-
|-
|BBP(2,4)
|BBP(2,4)
|<math> \geq 33\,209\,131 </math>
|<math>\geq 33\,209\,131</math>
|{{TM|1RB0RA3LB1RB_2LA0LB1RA2RB}}
|{{TM|1RB0RA3LB1RB_2LA0LB1RA2RB}}
|}
|}
Line 579: Line 579:
|-
|-
|BBλ(21)
|BBλ(21)
|<math> 22 </math>
|<math>22</math>
|<code> \(\1 1) (1 (\2)) </code>
|<code>\(\1 1) (1 (\2))</code>
|-
|-
|BBλ(22)
|BBλ(22)
|<math> 24 </math>
|<math>24</math>
|<code> \(\1 1) (1 (\\1))\(\1 1 1) (1 1) </code>
|<code>\(\1 1) (1 (\\1))\(\1 1 1) (1 1)</code>
|-
|-
|BBλ(23)
|BBλ(23)
|<math> 26 </math>
|<math>26</math>
|<code> \(\1 1) (1 (\\2)) </code>
|<code>\(\1 1) (1 (\\2))</code>
|-
|-
|BBλ(24)
|BBλ(24)
|<math> 30 </math>
|<math>30</math>
|<code> \(\1 1 1) (1 (\1)) </code>
|<code>\(\1 1 1) (1 (\1))</code>
|-
|-
|BBλ(25)
|BBλ(25)
|<math> 42 </math>
|<math>42</math>
|<code> \(\1 1) (\1 (2 1)) </code>
|<code>\(\1 1) (\1 (2 1))</code>
|-
|-
|BBλ(26)
|BBλ(26)
|<math> 52 </math>
|<math>52</math>
|<code> (\1 1) (\\2 (1 2)) </code>
|<code>(\1 1) (\\2 (1 2))</code>
|-
|-
|BBλ(27)
|BBλ(27)
|<math> 44 </math>
|<math>44</math>
|<code> \\(\1 1) (\1 (2 1)) </code>
|<code>\\(\1 1) (\1 (2 1))</code>
|-
|-
|BBλ(28)
|BBλ(28)
|<math> 58 </math>
|<math>58</math>
|<code> \(\1 1) (\1 (2 (\2)))) </code>
|<code>\(\1 1) (\1 (2 (\2))))</code>
|-
|-
|BBλ(29)
|BBλ(29)
|<math> 223 </math>
|<math>223</math>
|<code> \(\1 1) (\1 (1 (2 1))) </code>
|<code>\(\1 1) (\1 (1 (2 1)))</code>
|-
|-
|BBλ(30)
|BBλ(30)
|<math> 160 </math>
|<math>160</math>
|<code> (\1 1 1) (\\2 (1 2)) </code> and <code> (\1 (1 1)) (\\2 (1 2)) </code>
|<code>(\1 1 1) (\\2 (1 2))</code> and <code>(\1 (1 1)) (\\2 (1 2))</code>
|-
|-
|BBλ(31)
|BBλ(31)
|<math> 267 </math>
|<math>267</math>
|<code> (\1 1) (\\2 (2 (1 2))) </code>
|<code>(\1 1) (\\2 (2 (1 2)))</code>
|-
|-
|BBλ(32)
|BBλ(32)
|<math> 298 </math>
|<math> 298 </math>
|<code> \(\1 1) (\1 (1 (2 (\2)))) </code>
|<code>\(\1 1) (\1 (1 (2 (\2))))</code>
|-
|-
|BBλ(33)
|BBλ(33)
|<math> 1812 </math>
|<math>1812</math>
|<code> \(\1 1) (\1 (1 (1 (2 1)))) </code>
|<code>\(\1 1) (\1 (1 (1 (2 1))))</code>
|-
|-
|BBλ(34)
|BBλ(34)
|<math> 327\,686 </math>
|<math>327\,686</math>
|<code> (\1 1 1 1) (\\2 (2 1)) </code> and <code> (\1 (1 1) 1) (\\2 (2 1)) </code>
|<code>(\1 1 1 1) (\\2 (2 1))</code> and <code>(\1 (1 1) 1) (\\2 (2 1))</code>
|-
|-
|BBλ(35)
|BBλ(35)
|<math> 5 \times 3^{3^{3}} +6 > 3.8 \times 10^{13} </math>
|<math>5 \times 3^{3^{3}} +6 > 3.8 \times 10^{13}</math>
|<code> (\1 1 1) (\\2 (2 (2 1))) </code>
|<code>(\1 1 1) (\\2 (2 (2 1)))</code>
|-
|-
|BBλ(36)
|BBλ(36)
|<math> 5 \times 2^{2^{2^{3}}} +6 > 5.7 \times 10^{77} </math>
|<math>5 \times 2^{2^{2^{3}}} +6 > 5.7 \times 10^{77}</math>
|<code> (\1 1) (\1 (1 (\\2 (2 1)))) </code>
|<code>(\1 1) (\1 (1 (\\2 (2 1))))</code>
|-
|-
|BBλ(37)
|BBλ(37)
|BBλ(35) +2 = <math> 5 \times 3^{3^{3}} +8 > 3.8 \times 10^{13} </math>
|<math>BB \lambda(35) +2 =5 \times 3^{3^{3}} +8 > 3.8 \times 10^{13}</math>
|<code> \(\1 1 1) (\\2 (2 (2 1))) </code>
|<code>\(\1 1 1) (\\2 (2 (2 1)))</code>
|-
|-
|BBλ(38)
|BBλ(38)
|<math> \geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{10^{4}} </math>
|<math>\geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{10^{4}}</math>
|<code> (\1 1 1 1 1) (\\2 (2 1)) </code> and <code> (\1 (1 1) 1 1) (\\2 (2 1)) </code>
|<code>(\1 1 1 1 1) (\\2 (2 1))</code> and <code>(\1 (1 1) 1 1) (\\2 (2 1))</code>
|-
|-
|BBλ(39)
|BBλ(39)
|<math> \geq 5 \times 3^{3^{3^{3}}} +6 > 10^{10^{12}} </math>
|<math>\geq 5 \times 3^{3^{3^{3}}} +6 > 10^{10^{12}}</math>
|<code> (\1 1 1 1) (\\2 (2 (2 1))) </code>
|<code>(\1 1 1 1) (\\2 (2 (2 1)))</code>
|-
|-
|BBλ(40)
|BBλ(40)
|<math> > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16 </math>
|<math>> (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16</math>
|<code> (\1 1 1) (\1 (\\2 (2 1)) 1) </code>
|<code>(\1 1 1) (\1 (\\2 (2 1)) 1)</code>
|-
|-
|BBλ(41)
|BBλ(41)
|<math> \geq 5 \times 3^{3^{85}} +6 > 10^{10^{40}} </math>
|<math>\geq 5 \times 3^{3^{85}} +6 > 10^{10^{40}}</math>
|<code> (\1 (\1 1) 1) (\\2 (2 (2 1))) </code>
|<code>(\1 (\1 1) 1) (\\2 (2 (2 1)))</code>
|-
|-
|BBλ(42)
|BBλ(42)
|<math> \geq </math> BBλ(40) + 2 <math> > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16 </math>
|<math>\geq BB \lambda(40) + 2 > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16</math>
|<code> \(\1 1 1) (\1 (\\2 (2 1)) 1) </code>
|<code>\(\1 1 1) (\1 (\\2 (2 1)) 1)</code>
|-
|-
|BBλ(43)
|BBλ(43)
|<math> > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8 </math>
|<math>> 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math>
|<code> (\1 1) (\1 (\1 (\\2 (2 1)) 2)) </code>
|<code>(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code>
|-
|-
|BBλ(44)
|BBλ(44)
|<math> > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16 </math>
|<math>> 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math>
|<code> (\1 1 1 1) (\1 (\\2 (2 1)) 1) </code>
|<code>(\1 1 1 1) (\1 (\\2 (2 1)) 1)</code>
|-
|-
|BBλ(45)
|BBλ(45)
|<math> \geq </math> BBλ(43) + 2 <math> > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8 </math>
|<math>\geq BB \lambda(43) + 2 > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math>
|<code> \(\1 1) (\1 (\1 (\\2 (2 1)) 2)) </code>
|<code>\(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code>
|-
|-
|BBλ(46)
|BBλ(46)
|<math> \geq </math> BBλ(44) + 2 <math> > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16 </math>
|<math>\geq BB \lambda(44) + 2 > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math>
|<code> \(\1 1 1 1) (\1 (\\2 (2 1)) 1) </code>
|<code>\(\1 1 1 1) (\1 (\\2 (2 1)) 1)</code>
|-
|-
|BBλ(47)
|BBλ(47)
Line 687: Line 687:
|-
|-
|BBλ(48)
|BBλ(48)
|<math> > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16 </math>
|<math>> 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math>
|<code> (\1 1 1 1 1) (\1 (\\2 (2 1)) 1) </code>
|<code>(\1 1 1 1 1) (\1 (\\2 (2 1)) 1)</code>
|-
|-
|BBλ(49)
|BBλ(49)
|<math> > f_{\omega+1}(\frac{2 \uparrow\uparrow 6}{2}) > \text{Grahams Number} </math>
|<math>> f_{\omega+1}(\frac{2 \uparrow\uparrow 6}{2}) > \text{Grahams Number}</math>
|<code> (\1 1) (\1 (1 (\\1 2 (\\2 (2 1))))) </code>
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code>
|-
|-
|BBλ(1850)
|BBλ(1850)
|<math> > \text{Loaders Number} </math>
|<math>> \text{Loaders Number}</math>
|<code> Too large for this list </code>
|<code>Too large for this list</code>
|}
|}
==Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>]])==
==Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>]])==
Note that <math> f(n) = 6 + 5 \times BB \lambda(n) </math>.
Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>.
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 707: Line 707:
|-
|-
|BBλ<sub>1</sub>(1)
|BBλ<sub>1</sub>(1)
|<math> 0 </math>
|<math>0</math>
|
|
|-
|-
|BBλ<sub>1</sub>(2)
|BBλ<sub>1</sub>(2)
|<math> 1 </math>
|<math>1</math>
|<code> 1 </code>
|<code>1</code>
|-
|-
|BBλ<sub>1</sub>(3)
|BBλ<sub>1</sub>(3)
|<math> 0 </math>
|<math>0</math>
|
|
|-
|-
|BBλ<sub>1</sub>(4)
|BBλ<sub>1</sub>(4)
|<math> 4 </math>
|<math>4</math>
|<code> \1 </code>
|<code>\1</code>
|-
|-
|BBλ<sub>1</sub>(5)
|BBλ<sub>1</sub>(5)
|<math> 5 </math>
|<math>5</math>
|<code> \2 </code>
|<code>\2</code>
|-
|-
|BBλ<sub>1</sub>(6)
|BBλ<sub>1</sub>(6)
|<math> 6 </math>
|<math>6</math>
|<code> \\1 </code>
|<code>\\1</code>
|-
|-
|BBλ<sub>1</sub>(7)
|BBλ<sub>1</sub>(7)
|<math> 7 </math>
|<math>7</math>
|<code> \\2 </code>
|<code>\\2</code>
|-
|-
|BBλ<sub>1</sub>(8)
|BBλ<sub>1</sub>(8)
|<math> 26 </math>
|<math>26</math>
|<code> 1 (\1) </code>
|<code>1 (\1)</code>
|-
|-
|BBλ<sub>1</sub>(9)
|BBλ<sub>1</sub>(9)
|<math> 9 </math>
|<math>9</math>
|<code> \\2 </code>
|<code>\\2</code>
|-
|-
|BBλ<sub>1</sub>(10)
|BBλ<sub>1</sub>(10)
|<math> 36 </math>
|<math>36</math>
|<code> 1 (\\1) </code>
|<code>1 (\\1)</code>
|-
|-
|BBλ<sub>1</sub>(11)
|BBλ<sub>1</sub>(11)
|<math> 41 </math>
|<math>41</math>
|<code> 1 (\\2) </code>
|<code>1 (\\2)</code>
|-
|-
|BBλ<sub>1</sub>(12)
|BBλ<sub>1</sub>(12)
|<math> 266 </math>
|<math>266</math>
|<code> 1 (1 (\1)) </code>
|<code>1 (1 (\1))</code>
|-
|-
|BBλ<sub>1</sub>(13)
|BBλ<sub>1</sub>(13)
|<math> 51 </math>
|<math>51</math>
|<code> 1 (\\2) </code>
|<code>1 (\\2)</code>
|-
|-
|BBλ<sub>1</sub>(14)
|BBλ<sub>1</sub>(14)
|<math> f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78} </math>
|<math>f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78}</math>
|<code> 1 (1 (\\1)) </code>
|<code>1 (1 (\\1))</code>
|-
|-
|BBλ<sub>1</sub>(15)
|BBλ<sub>1</sub>(15)
|<math> f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{10^{40}} </math>
|<math>f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{10^{40}}</math>
|<code> 1 (1 (\\2)) </code>
|<code>1 (1 (\\2))</code>
|-
|-
|BBλ<sub>1</sub>(16)
|BBλ<sub>1</sub>(16)
|<math> f(266) </math>
|<math>f(266)</math>
|<code> 1 (1 (1 (\1))) </code>
|<code>1 (1 (1 (\1)))</code>
|-
|-
|BBλ<sub>1</sub>(17)
|BBλ<sub>1</sub>(17)
|<math> f(51) </math>
|<math>f(51)</math>
|<code> 1 (1 (\\\2)) </code>
|<code>1 (1 (\\\2))</code>
|-
|-
|BBλ<sub>1</sub>(18)
|BBλ<sub>1</sub>(18)
|<math> f^{4}(4) = f(f(266)) </math>
|<math>f^{4}(4) = f(f(266))</math>
|<code> 1 (\1) 1 (\1) </code>
|<code>1 (\1) 1 (\1)</code>
|-
|-
|BBλ<sub>1</sub>(19)
|BBλ<sub>1</sub>(19)
|<math> f^{3}(7) = f(f(41)) </math>
|<math>f^{3}(7) = f(f(41))</math>
|<code> 1 (1 (1 (\\2))) </code>
|<code>1 (1 (1 (\\2)))</code>
|-
|-
|BBλ<sub>1</sub>(20)
|BBλ<sub>1</sub>(20)
|<math> f^{6}(4) = f^{4}(266) </math>
|<math>f^{6}(4) = f^{4}(266)</math>
|<code> 1 (\\1) 1 (\1) </code>
|<code>1 (\\1) 1 (\1)</code>
|-
|-
|BBλ<sub>1</sub>(21)
|BBλ<sub>1</sub>(21)
|<math> f^{7}(4) = f^{5}(266) </math>
|<math>f^{7}(4) = f^{5}(266)</math>
|<code> 1 (\\2) 1 (\1) </code>
|<code>1 (\\2) 1 (\1)</code>
|-
|-
|BBλ<sub>1</sub>(22)
|BBλ<sub>1</sub>(22)
|<math> f^{52}(4) = f^{50}(266) </math>
|<math>f^{52}(4) = f^{50}(266)</math>
|<code> 1 (1(\1)) 1(\1) </code>
|<code>1 (1(\1)) 1(\1)</code>
|-
|-
|BBλ<sub>1</sub>(28)
|BBλ<sub>1</sub>(28)
|<math> \geq f^{BB \lambda(f^{3}(4))}(4) </math>
|<math>\geq f^{BB \lambda(f^{3}(4))}(4)</math>
|<code> 1 (\1) 1 (\1) 1 (\1) </code>
|<code>1 (\1) 1 (\1) 1 (\1)</code>
|}
|}
='''Doodle Function ([[Doodle function|doodle]])'''=
='''Doodle Function ([[Doodle function|doodle]])'''=
Line 809: Line 809:
|-
|-
|doodle(3,2)
|doodle(3,2)
|<math> \geq 487 </math>
|<math>\geq 487</math>
|
|
|}
|}
='''Terminating Turmites ([[TT]])'''=
='''Terminating Turmites ([[TT]])'''=
There are currently no known/available Champions for this function.
There are currently no known/available Champions for this function.

Revision as of 18:20, 14 August 2025

A collection of Busy Beaver Champions including Champions for BB-Adjacent functions.

Original Busy Beaver Functions

Maximum Shifts Function (BB)

2 Symbols:

Runtime Champions
BB(1) 1RZ--- (bbch)
BB(2) 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch)
BB(3) 1RB1RZ_1LB0RC_1LC1LA (bbch)
BB(4) 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch)
BB(5) 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
BB(6) 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
BB(7) 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
BB(8)
BB(9) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH (bbch)
BB(10) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch)
BB(11) 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch)
BB(12) 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch)
BB(14) 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch)
BB(15) 0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN (bbch)
BB(16)
BB(18)
BB(20)
BB(21)
BB(40)
BB(41)
BB(51)

3 Symbols:

Runtime Champions
BB(1,3) 1RZ------ (bbch)
BB(2,3) 1RB2LB1RZ_2LA2RB1LB (bbch)
BB(3,3) 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
BB(4,3) 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

4 Symbols:

Runtime Champions
BB(1,4) 1RZ--------- (bbch)
BB(2,4) 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
BB(3,4) 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)

5 Symbols:

Runtime Champions
BB(1,5) 1RZ------------ (bbch)
BB(2,5) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
BB(3,5) 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)

6 Symbols:

Runtime Champions
BB(1,6) 1RZ--------------- (bbch)
BB(2,6) 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)

Maximum Score Function (Σ)

2 Symbols:

Score Champions
Σ(1) 1RZ--- (bbch)
Σ(2) 1RB1LB_1LA1RZ (bbch)
Σ(3) 1RB1RZ_0RC1RB_1LC1LA (bbch) 1RB1RC_1LC1RZ_1RA0LB (bbch) 1RB1LC_1LA1RB_1LB1RZ (bbch) 1RB1RA_1LC1RZ_1RA1LB (bbch) 1RB1LC_1RC1RZ_1LA0LB (bbch)
Σ(4) 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) 1RB0RC_1LA1RA_1RZ1RD_1LD0LB (bbch)
Σ(5) 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) 1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC (bbch)
Σ(6) 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
Σ(7) 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)

3 Symbols:

Score Champions
Σ(1,3) 1RZ------ (bbch)
Σ(2,3) 1RB2LB1RZ_2LA2RB1LB (bbch)
Σ(3,3) 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
Σ(4,3) 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

4 Symbols:

Score Champions
Σ(1,4) 1RZ--------- (bbch)
Σ(2,4) 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)

5 Symbols:

Score Champions
Σ(1,5) 1RZ------------ (bbch)
Σ(2,5) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)

Beeping Busy Beavers

Beeping Busy Beaver (BBB)

2 Symbols:

Steps taken Champions
BBB(1)
BBB(2)
BBB(3) 1LB0RB_1RA0LC_1RC1RA (bbch)
BBB(4)
BBB(5)

3 Symbols:

Steps taken Champions
BBB(1,3)
BBB(2,3)
BBB(3,3)

Beeping Booping Busy Beaver (BBBB)

There are currently no known/available Champions for this function.

Maximum Consecutive Ones Function (Num)

2 Symbols:

Number of Ones Champions
num(1) 1RZ--- (bbch)
num(2) 1RB1LB_1LA1LZ (bbch)
num(3) 1RB1LC_1RC1LZ_1LA0LB (bbch)
num(4) 1RB0LA_1RC1LB_1LB1RD_1RZ0RA (bbch)
num(5) 1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB (bbch) 0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC (bbch)

Instruction-Limited Busy Beaver

Maximum amount of steps (BBi)

Steps Champions
BBi(1) 0RH (bbch) 1RH--- (bbch)
BBi(2) 0RB---_1LA--- (bbch)
BBi(3) 1RB1LB_1LA--- (bbch)
BBi(4) 1RB---_0RC---_1LC0LA (bbch)
BBi(5) 1RB2LB---_2LA2RB1LB (bbch)
BBi(6) 1RB3LA1RA0LA_2LA------3RA (bbch)
BBi(7) 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
BBi(8) 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)

Maximum Score (Σi)

Score Champions
Σi(1) 1RH--- (bbch)
Σi(2) 1RB---_1LA--- (bbch)
Σi(3) 1RB1LB_1LA--- (bbch)
Σi(4) 1RB0LB---_1LA2RA--- (bbch)
Σi(5) 1RB2LB---_2LA2RB1LB (bbch)
Σi(6) 1RB3LA1RA0LA_2LA------3RA (bbch)
Σi(7) 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
Σi(8) 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)

Reversible Turing Machines

Maximum Shifts Function (BBrev)

2 Symbols:

Steps Champions
BBrev(1)
BBrev(2) 0RB1RZ_1LA1RB (bbch)
BBrev(3) 0RB1RZ_0LC1RA_1RB1LC (bbch)
BBrev(4) 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
BBrev(5) 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
BBrev(6) 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
BBrev(7) 1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ (bbch)

Maximum Score Function (Σrev)

2 Symbols:

Score Champions
Σrev(1)
Σrev(2) 0RB1RZ_1LA1RB (bbch)
Σrev(3) 0RB1RZ_0LC1RA_1RB1LC (bbch)
Σrev(4) 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
Σrev(5) 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
Σrev(6) 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)

Blanking Busy Beaver (BLB)

There are currently no known/available Champions for this function.

Period-oriented Busy Beavers

Busy Preperiodic Beaver (BBS)

2 Symbols:

Preperiod Champions
BBS(1,2)
BBS(2,2)
BBS(3,2) 1RB1LB_0RC0LA_1LC0LA (bbch)
BBS(4,2) 1RB1LC_0LA1RD_0RB0LC_1LA0RD (bbch)

3 Symbols: It seems that currently no information is available for this domain.

4 Symbols:

Preperiod Champions
BBS(1,4)
BBS(2,4) 1RB2LA0RA3LA_1LA1LB3RB1RA (bbch)

Busy Periodic Beaver (BBP)

2 Symbols:

Period Champions
BBP(1,2)
BBP(2,2)
BBP(3,2) 1RB0LA_0RC1LA_1LC0RB (bbch)
BBP(4,2) 1RB0LA_0RC1RD_1LD0RB_1LA1RB (bbch)

3 Symbols: It seems that currently no information is available for this domain.

4 Symbols:

Period Champions
BBP(1,4)
BBP(2,4) 1RB0RA3LB1RB_2LA0LB1RA2RB (bbch)

Busy Beaver for Lambda Calculus (BBλ)

Regular Busy Beaver for Lambda Calculus

For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of BBλ(n) = n.

BBλ(n) Champions
BBλ(21) \(\1 1) (1 (\2))
BBλ(22) \(\1 1) (1 (\\1))\(\1 1 1) (1 1)
BBλ(23) \(\1 1) (1 (\\2))
BBλ(24) \(\1 1 1) (1 (\1))
BBλ(25) \(\1 1) (\1 (2 1))
BBλ(26) (\1 1) (\\2 (1 2))
BBλ(27) \\(\1 1) (\1 (2 1))
BBλ(28) \(\1 1) (\1 (2 (\2))))
BBλ(29) \(\1 1) (\1 (1 (2 1)))
BBλ(30) (\1 1 1) (\\2 (1 2)) and (\1 (1 1)) (\\2 (1 2))
BBλ(31) (\1 1) (\\2 (2 (1 2)))
BBλ(32) \(\1 1) (\1 (1 (2 (\2))))
BBλ(33) \(\1 1) (\1 (1 (1 (2 1))))
BBλ(34) (\1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1) (\\2 (2 1))
BBλ(35) (\1 1 1) (\\2 (2 (2 1)))
BBλ(36) (\1 1) (\1 (1 (\\2 (2 1))))
BBλ(37) \(\1 1 1) (\\2 (2 (2 1)))
BBλ(38) (\1 1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1 1) (\\2 (2 1))
BBλ(39) (\1 1 1 1) (\\2 (2 (2 1)))
BBλ(40) (\1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(41) (\1 (\1 1) 1) (\\2 (2 (2 1)))
BBλ(42) \(\1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(43) (\1 1) (\1 (\1 (\\2 (2 1)) 2))
BBλ(44) (\1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(45) \(\1 1) (\1 (\1 (\\2 (2 1)) 2))
BBλ(46) \(\1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(47)
BBλ(48) (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(49) (\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))
BBλ(1850) Too large for this list

Oracle Busy Beaver for Lambda Calculus (BBλ1)

Note that .

BBλ1(n) Champions
BBλ1(1)
BBλ1(2) 1
BBλ1(3)
BBλ1(4) \1
BBλ1(5) \2
BBλ1(6) \\1
BBλ1(7) \\2
BBλ1(8) 1 (\1)
BBλ1(9) \\2
BBλ1(10) 1 (\\1)
BBλ1(11) 1 (\\2)
BBλ1(12) 1 (1 (\1))
BBλ1(13) 1 (\\2)
BBλ1(14) 1 (1 (\\1))
BBλ1(15) 1 (1 (\\2))
BBλ1(16) 1 (1 (1 (\1)))
BBλ1(17) 1 (1 (\\\2))
BBλ1(18) 1 (\1) 1 (\1)
BBλ1(19) 1 (1 (1 (\\2)))
BBλ1(20) 1 (\\1) 1 (\1)
BBλ1(21) 1 (\\2) 1 (\1)
BBλ1(22) 1 (1(\1)) 1(\1)
BBλ1(28) 1 (\1) 1 (\1) 1 (\1)

Doodle Function (doodle)

doodle(1,n) = 1 and doodle(2,n) = n

2 Symbols:

Runtime Champions
doodle(3,2)

Terminating Turmites (TT)

There are currently no known/available Champions for this function.