Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
m (The text associated with "\xrightarrow" was being clipped in some cases and wasn't readable.)
Line 2: Line 2:
   c(2k)  & = &  k \\
   c(2k)  & = &  k \\
   c(2k+1) & = & 3k+2 \\
   c(2k+1) & = & 3k+2 \\
\end{array}</math>A '''Collatz-like problem''' is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.
\end{array}</math>
 
A '''Collatz-like problem''' is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.


Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Line 19: Line 21:
   M(3k+2) & \xrightarrow{6k +12} & 0^\infty \;\; 1 \;\; \textrm{H>} \;\; 01 \;\; {(001)}^{k+1} \;\; 1 \;\; 0^\infty  \\
   M(3k+2) & \xrightarrow{6k +12} & 0^\infty \;\; 1 \;\; \textrm{H>} \;\; 01 \;\; {(001)}^{k+1} \;\; 1 \;\; 0^\infty  \\
\end{array}</math>
\end{array}</math>


Starting on a blank tape <math>C(0)</math>, these rules iterate 15 times before reaching the halt config.<ref>[https://bbchallenge.org/~pascal.michel/beh#tm52a Pascal Michel's Analysis of the BB(5, 2) Champion]</ref>
Starting on a blank tape <math>C(0)</math>, these rules iterate 15 times before reaching the halt config.<ref>[https://bbchallenge.org/~pascal.michel/beh#tm52a Pascal Michel's Analysis of the BB(5, 2) Champion]</ref>
Line 26: Line 27:
Consider Hydra (a [[Cryptids|Cryptid]]) <code>1RB3RB---3LA1RA_2LA3RA4LB0LB0LA</code> and the generalized configuration:
Consider Hydra (a [[Cryptids|Cryptid]]) <code>1RB3RB---3LA1RA_2LA3RA4LB0LB0LA</code> and the generalized configuration:


<math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math> Daniel Yuan showed that:<math display="block">\begin{array}{l}
<math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
Daniel Yuan showed that:<math display="block">\begin{array}{l}
  \\
   0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\
   0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & b+1) & \to & C(3n,  & b) \\
   C(2n,  & b+1) & \to & C(3n,  & b) \\
   C(2n+1, & b)  & \to & C(3n+1, & b+2) \\
   C(2n+1, & b)  & \to & C(3n+1, & b+2) \\
\end{array}</math>Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.
\end{array}</math>
 
Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.


Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l}
Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l}
Line 38: Line 43:
\end{array}</math>starting from 3:
\end{array}</math>starting from 3:


<math display="block">3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots</math>Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>
<math display="block">\begin{array}{l}
  \\
  3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots \\
\end{array}
</math>
 
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>


=== Tetration Machine ===
=== Tetration Machine ===
Consider the current [[BB(6, 2)]] Champion (discovered by Pavel Kropitz in May 2022)  <code>1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE</code> and consider the general configuration:<math display="block">K(a, b) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:<math display="block">\begin{array}{l}
Consider the current [[BB(6, 2)]] Champion (discovered by Pavel Kropitz in May 2022)  <code>1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE</code> and consider the general configuration:<math display="block">K(a, b) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
<math display="block">\begin{array}{l}
  \\
   0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\
   0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\
   K(4k)  & \to & \text{Halt}(9n-6) \\
   K(4k)  & \to & \text{Halt}(9n-6) \\
Line 47: Line 60:
   K(4n+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4n+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4n+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
   K(4n+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
\end{array}</math>Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
\end{array}</math>
 
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>


== References ==
== References ==
<references />
<references />

Revision as of 03:43, 6 June 2024

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Examples

BB(5, 2) Champion

Consider the BB(5, 2) Champion (1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA) and the generalize configuration:

Pascal Michel showed that:

Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra (a Cryptid) 1RB3RB---3LA1RA_2LA3RA4LB0LB0LA and the generalized configuration:

Daniel Yuan showed that:

Where is a halting configuration with non-zero symbols on the tape.

Starting from config this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function

starting from 3:

Specifically, will it ever reach a point where the cumulative number of E (even transitions) applied is greater than twice the number of O (odd transitions) applied?[2]

Tetration Machine

Consider the current BB(6, 2) Champion (discovered by Pavel Kropitz in May 2022) 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE and consider the general configuration:

Shawn Ligocki showed that:

Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]

References