Collatz-like: Difference between revisions
No edit summary |
m (The text associated with "\xrightarrow" was being clipped in some cases and wasn't readable.) |
||
Line 2: | Line 2: | ||
c(2k) & = & k \\ | c(2k) & = & k \\ | ||
c(2k+1) & = & 3k+2 \\ | c(2k+1) & = & 3k+2 \\ | ||
\end{array}</math>A '''Collatz-like problem''' is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult. | \end{array}</math> | ||
A '''Collatz-like problem''' is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult. | |||
Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. | Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. | ||
Line 19: | Line 21: | ||
M(3k+2) & \xrightarrow{6k +12} & 0^\infty \;\; 1 \;\; \textrm{H>} \;\; 01 \;\; {(001)}^{k+1} \;\; 1 \;\; 0^\infty \\ | M(3k+2) & \xrightarrow{6k +12} & 0^\infty \;\; 1 \;\; \textrm{H>} \;\; 01 \;\; {(001)}^{k+1} \;\; 1 \;\; 0^\infty \\ | ||
\end{array}</math> | \end{array}</math> | ||
Starting on a blank tape <math>C(0)</math>, these rules iterate 15 times before reaching the halt config.<ref>[https://bbchallenge.org/~pascal.michel/beh#tm52a Pascal Michel's Analysis of the BB(5, 2) Champion]</ref> | Starting on a blank tape <math>C(0)</math>, these rules iterate 15 times before reaching the halt config.<ref>[https://bbchallenge.org/~pascal.michel/beh#tm52a Pascal Michel's Analysis of the BB(5, 2) Champion]</ref> | ||
Line 26: | Line 27: | ||
Consider Hydra (a [[Cryptids|Cryptid]]) <code>1RB3RB---3LA1RA_2LA3RA4LB0LB0LA</code> and the generalized configuration: | Consider Hydra (a [[Cryptids|Cryptid]]) <code>1RB3RB---3LA1RA_2LA3RA4LB0LB0LA</code> and the generalized configuration: | ||
<math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math> Daniel Yuan showed that:<math display="block">\begin{array}{l} | <math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math> | ||
Daniel Yuan showed that:<math display="block">\begin{array}{l} | |||
\\ | |||
0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\ | 0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\ | ||
C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | ||
C(2n, & b+1) & \to & C(3n, & b) \\ | C(2n, & b+1) & \to & C(3n, & b) \\ | ||
C(2n+1, & b) & \to & C(3n+1, & b+2) \\ | C(2n+1, & b) & \to & C(3n+1, & b+2) \\ | ||
\end{array}</math>Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape. | \end{array}</math> | ||
Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape. | |||
Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l} | Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l} | ||
Line 38: | Line 43: | ||
\end{array}</math>starting from 3: | \end{array}</math>starting from 3: | ||
<math display="block">3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots</math>Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> | <math display="block">\begin{array}{l} | ||
\\ | |||
3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots \\ | |||
\end{array} | |||
</math> | |||
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> | |||
=== Tetration Machine === | === Tetration Machine === | ||
Consider the current [[BB(6, 2)]] Champion (discovered by Pavel Kropitz in May 2022) <code>1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE</code> and consider the general configuration:<math display="block">K(a, b) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:<math display="block">\begin{array}{l} | Consider the current [[BB(6, 2)]] Champion (discovered by Pavel Kropitz in May 2022) <code>1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE</code> and consider the general configuration:<math display="block">K(a, b) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that: | ||
<math display="block">\begin{array}{l} | |||
\\ | |||
0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\ | 0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\ | ||
K(4k) & \to & \text{Halt}(9n-6) \\ | K(4k) & \to & \text{Halt}(9n-6) \\ | ||
Line 47: | Line 60: | ||
K(4n+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\ | K(4n+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\ | ||
K(4n+3) & \to & K(\frac{3^{k+3} + 1}{2}) \\ | K(4n+3) & \to & K(\frac{3^{k+3} + 1}{2}) \\ | ||
\end{array}</math>Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref> | \end{array}</math> | ||
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref> | |||
== References == | == References == | ||
<references /> | <references /> |
Revision as of 03:43, 6 June 2024
A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:
A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.
Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Examples
BB(5, 2) Champion
Consider the BB(5, 2) Champion (1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
) and the generalize configuration:
Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]
Hydra
Consider Hydra (a Cryptid) 1RB3RB---3LA1RA_2LA3RA4LB0LB0LA
and the generalized configuration:
Where is a halting configuration with non-zero symbols on the tape.
Starting from config this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function
Specifically, will it ever reach a point where the cumulative number of E
(even transitions) applied is greater than twice the number of O
(odd transitions) applied?[2]
Tetration Machine
Consider the current BB(6, 2) Champion (discovered by Pavel Kropitz in May 2022) 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE
and consider the general configuration:
Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]
References
- ↑ Pascal Michel's Analysis of the BB(5, 2) Champion
- ↑ Shawn Ligocki. BB(2, 5) is Hard (Hydra). 10 May 2024.
- ↑ Shawn Ligocki. BB(6, 2) > 10↑↑15. 21 Jun 2022.