1RB3LA1LA1RA3RA 2LB2RA---4RB1LB: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Created page with "{{machine|1RB3LA1LA1RA3RA_2LB2RA---4RB1LB}} {{TM|1RB3LA1LA1RA3RA_2LB2RA---4RB1LB}} is a BB(2,5) TM analyzed by Racheline [https://discord.com/channels/960643023006490684/1349040227548663858/1349448649817456670 on 12 Mar 2025] that appears to be a Cryptid Analysis by Racheline: <pre> 1RB3LA1LA1RA3RA_2LB2RA---4RB1LB A(a,b) := 0^inf 1 4^a 1^3 A> 1^b 2 0^inf B(a,b) := 0^inf 1 4^a 1^b A> 1 0^inf A(a,2a+b+3) -> A(3a+4,b) A(a,2a+2) -> B(3a+4,2) A(a,2a+1) -> halt A(a,2...")
 
m (Added missing point)
 
Line 1: Line 1:
{{machine|1RB3LA1LA1RA3RA_2LB2RA---4RB1LB}}
{{machine|1RB3LA1LA1RA3RA_2LB2RA---4RB1LB}}
{{TM|1RB3LA1LA1RA3RA_2LB2RA---4RB1LB}} is a [[BB(2,5)]] TM analyzed by Racheline [https://discord.com/channels/960643023006490684/1349040227548663858/1349448649817456670 on 12 Mar 2025] that appears to be a [[Cryptid]]
{{TM|1RB3LA1LA1RA3RA_2LB2RA---4RB1LB}} is a [[BB(2,5)]] TM analyzed by Racheline [https://discord.com/channels/960643023006490684/1349040227548663858/1349448649817456670 on 12 Mar 2025] that appears to be a [[Cryptid]].


Analysis by Racheline:
Analysis by Racheline:

Latest revision as of 11:52, 5 August 2025

1RB3LA1LA1RA3RA_2LB2RA---4RB1LB (bbch) is a BB(2,5) TM analyzed by Racheline on 12 Mar 2025 that appears to be a Cryptid.

Analysis by Racheline:

1RB3LA1LA1RA3RA_2LB2RA---4RB1LB
A(a,b) := 0^inf 1 4^a 1^3 A> 1^b 2 0^inf
B(a,b) := 0^inf 1 4^a 1^b A> 1 0^inf

A(a,2a+b+3) -> A(3a+4,b)
A(a,2a+2) -> B(3a+4,2)
A(a,2a+1) -> halt
A(a,2a) -> B(3a+1,7)
A(a,2a-2) -> B(3a+1,5)
A(a+b+3,2b+2) -> B(a,3b+10)
A(a+b+1,2b+1) -> B(a,3b+5)

B(3a,b) -> A(6,7a+b-4)  (assuming 7a+b is large enough)
B(3a+1,b) -> B(7a+b+1,7)
B(3a+2,b) -> B(7a+b+4,5)

start from B(2,7)
B(2,7) -> B(11,5) -> B(30,5) -> A(6,71) -> A(22,56) -> A(70,9) -> B(65,17) -> B(168,5) -> A(6,393) -> A(22,378) -> A(70,331) -> A(214,188) -> B(118,289) -> B(563,7) -> B(1320,5) -> A(6,3081) -> ...

A(6,b) -> A(8*3^n-2,b-8*(3^n-1)+n) where n is maximal such that b >= 8*(3^n-1)-n