Instruction-Limited Busy Beaver: Difference between revisions
(A halting instruction is an instruction. BB(4,2) has eight instructions, not 7.) |
(Rework the BBi requires solving BB section) |
||
Line 73: | Line 73: | ||
Notes: | Notes: | ||
* Solving BBi( | * Solving BBi(ab-1) requires solving BB(a,b) since all halting BB(a,b) TMs can be converted into halting (ab-1)-instruction TMs. Furthermore, <math>BBi(ab-1) \ge BB(a,b) - 1</math> (the -1 at the end is because in BB(a,b) the halting transition counts as a step, but in BBi(ab-1) the TM halts as soon as it reaches the undefined transition). | ||
** | ** Thus solving BBi(8) will require solving [[BB(3,3)]] and in particular, it will require solving [[Bigfoot]], which is a [[Cryptids|Cryptid]]. | ||
** So far, BBi(ab-1) champions are also classic BB(a,b) champions (but with the final halting transition removed) for all a,b ≥ 2 explored so far, but it is not known if this trend will continue. | |||
** Beyond the table above we have intrinsic lower bounds: BBi(9) ≥ BB(2,5)-1, BBi(11) ≥ max(BB(2,6),BB(3,4),BB(4,3),BB(6,2))-1. | |||
* TNF Size is the total number of TMs enumerated in [[TNF]] with n (or fewer) instructions defined. | * TNF Size is the total number of TMs enumerated in [[TNF]] with n (or fewer) instructions defined. | ||
* BBi(n) ≥ n. A halting (n+1) x 1 TM that chains all its states together (A0 = 0RB, B0 = 0RC, C0 = 0RD, ...) through the penultimate TM state will take n steps to pass through all states exactly once (a repeat would guarantee nonhalting). The penultimate state, the nth state, puts the TM into n+1st state, which is undefined and does not count as a step. | * BBi(n) ≥ n. A halting (n+1) x 1 TM that chains all its states together (A0 = 0RB, B0 = 0RC, C0 = 0RD, ...) through the penultimate TM state will take n steps to pass through all states exactly once (a repeat would guarantee nonhalting). The penultimate state, the nth state, puts the TM into n+1st state, which is undefined and does not count as a step. |
Revision as of 15:10, 25 July 2025
An n-instruction Turing machine is a Turing machine with an arbitrary number of states and symbols, but only n defined transitions/instructions in its transition table (all others are undefined). The Instruction-Limited Busy Beaver (BBi(n)) problem is the Busy Beaver problem limited to n-instruction TMs. BBi(n) is the longest runtime for all halting n-instruction TMs when started on a blank tape and Σi(n) is the maximum number of non-blank symbols written by an n-instruction TM when halting and when started on a blank tape.
A TM is considered to halt as soon as it reaches an undefined transition. This convention reduces the number of instructions for a BBi Turing machine. In the traditional BB(n,m) problem, there is no explicit instruction limit (albeit an upper bound of nm) and so it is advantageous to use an explicit halting instruction which allows the machine to take one additional step.
Champions
n | BBi(n) | TNF Size | Champions | Notes | Reference |
---|---|---|---|---|---|
1 | 1 | 5 | 0RB_--- (bbch) 1RB---_------ (bbch)
|
A384629 | |
2 | 3 | 35 | 0RB---_1LA--- (bbch)
|
A384629 Shawn | |
3 | 5 | 413 | 1RB1LB_1LA--- (bbch) (and 13 others)
|
BB(2) champion | A384629 Shawn |
4 | 16 | 8,053 | 1RB---_0RC---_1LC0LA (bbch)
|
A384629 Shawn | |
5 | 37 | 213,633 | 1RB2LB---_2LA2RB1LB (bbch)
|
BB(2,3) champion | A384629 Shawn |
6 | 123 | 7,363,453 | 1RB3LA1RA0LA_2LA------3RA (bbch)
|
A384629 Shawn | |
7 | 3,932,963 | 312,696,581 | 1RB2LA1RA1RA_1LB1LA3RB--- (bbch)
|
BB(2,4) champion and
its BB(3,3) doppelganger |
A384629 |
8 | >=119,112,334,170,342,540 | 15,874,490,011 | 0RB2LA1RA_1LA2RB1RC_---1LB1LC (bbch)
|
Current BB(3,3) champion | A384629 |
Notes:
- Solving BBi(ab-1) requires solving BB(a,b) since all halting BB(a,b) TMs can be converted into halting (ab-1)-instruction TMs. Furthermore, (the -1 at the end is because in BB(a,b) the halting transition counts as a step, but in BBi(ab-1) the TM halts as soon as it reaches the undefined transition).
- Thus solving BBi(8) will require solving BB(3,3) and in particular, it will require solving Bigfoot, which is a Cryptid.
- So far, BBi(ab-1) champions are also classic BB(a,b) champions (but with the final halting transition removed) for all a,b ≥ 2 explored so far, but it is not known if this trend will continue.
- Beyond the table above we have intrinsic lower bounds: BBi(9) ≥ BB(2,5)-1, BBi(11) ≥ max(BB(2,6),BB(3,4),BB(4,3),BB(6,2))-1.
- TNF Size is the total number of TMs enumerated in TNF with n (or fewer) instructions defined.
- BBi(n) ≥ n. A halting (n+1) x 1 TM that chains all its states together (A0 = 0RB, B0 = 0RC, C0 = 0RD, ...) through the penultimate TM state will take n steps to pass through all states exactly once (a repeat would guarantee nonhalting). The penultimate state, the nth state, puts the TM into n+1st state, which is undefined and does not count as a step.
See Also
- OEIS list of BBi(n) values: https://oeis.org/A384629
- OEIS list of Σi(n) values: https://oeis.org/A384766
- Discussion on Discord: https://discord.com/channels/960643023006490684/960643023530762341/1393697378657374290