1RB0RA 1LC1LF 1RD0LB 1RA1LE 1RZ0LC 1RG1LD 0RG0RF: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Undo revision 1900 by Sligocki (talk)
Change function name to avoid conflict with the fast growing hierarchy.
Line 37: Line 37:
Let
Let


<math display=block>\begin{array}{l}
<math display="block">\begin{array}{l}
f_0(x)    & = & 2x + 4 \\
g_0(x)    & = & 2x + 4 \\
f_{k+1}(x) & = & f_k^{x+2}(0) \\
g_{k+1}(x) & = & g_k^{x+2}(0) \\
\end{array}</math>
\end{array}</math>


Line 45: Line 45:


<math display="block">
<math display="block">
B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(f_k^n(a); \underbrace{0, \cdots, 0}_k, 0, ...)
B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(g_k^n(a); \underbrace{0, \cdots, 0}_k, 0, ...)
</math>
</math>


Line 53: Line 53:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
a_0 & = & 2 \\
a_0 & = & 2 \\
a_{k+1} & = & f_k(a_k) \\
a_{k+1} & = & g_k(a_k) \\
\end{array}
\end{array}
</math>
</math>
Line 71: Line 71:
and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math>
and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math>


Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>,
Note that <math>g_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>,


<math display="block">
<math display="block">

Revision as of 03:13, 14 May 2025

1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch) is a halting BB(7) TM which runs for over 2112113 steps.

Analysis by Shawn Ligocki

Consider general configurations matching the regex:

011(1(01)*)*0011100A>0

Low level rules

              01 1 01^n 0011100 A> 00   -->                 1 01^n+2 0011100 A>
           01^3 11 01^n 0011100 A> 0^6  -->            1 01^n+5 1 01 0011100 A>
01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6  -->  1 01^n+6 (1 01)^k 11 01 0011100 A>
 011 (1 01)^k   11 01^n 0011100 A> 0^2  -->  1 Z> 111 01^n+1 00 101^k+2

Mid level rules

Let

B(a;b,c,...,z)=0111(01)3z+111(01)3c+11(01)3b+11(01)01(01)3a+10011100A>0

and let B(a; [x]*k, y, ...) = B(a;x,,xk,y,...) (In other words, [x]*k represents k repeats of the value x in a config).

then

B(a; b+1, ...) -> B(2a+4; b, ...)
B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...)
B(a; [0]*k) -> Halt(3a + 2k + 9)

Start at step 8178: B(2, [1]*12)

High level rule

Let

g0(x)=2x+4gk+1(x)=gkx+2(0)

then

B(a;0,,0k,n,...)B(gkn(a);0,,0k,0,...)

Bound

Let

a0=2ak+1=gk(ak)

then

B(a0;1,,1k)B(ak,0,,0k)Halt(3ak+2k+9)and

StartB(a0;1,,112)

and so this TM halts with a sigma score of σ=3a12+33

Note that gk(x)=(2k(x+4))4 and so for k2,

ak+1+4>2k2k3

and so this TM halts with sigma score σ>2112113.

This bound is pretty tight: σ<2112114=2124.