1RB0RA 1LC1LF 1RD0LB 1RA1LE 1RZ0LC 1RG1LD 0RG0RF: Difference between revisions
Jump to navigation
Jump to search
(Fix sigma bound) |
|||
Line 1: | Line 1: | ||
{{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} | {{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} | ||
{{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is a halting [[BB(7)]] TM which runs for over <math>2 \uparrow^{ | {{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is a halting [[BB(7)]] TM which runs for over <math>2 \uparrow^{11} 2 \uparrow^{11} 3</math> steps. | ||
== Analysis by Shawn Ligocki == | == Analysis by Shawn Ligocki == | ||
Line 71: | Line 71: | ||
and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math> | and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math> | ||
Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge | Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>, | ||
<math display="block"> | <math display="block"> | ||
a_{k+1} + 4 > 2 \uparrow^k 2 \uparrow^k 3 | |||
</math> | </math> | ||
and so this TM halts with sigma score <math>\sigma > 2 \uparrow^{12} 4</math>. | and so this TM halts with sigma score <math>\sigma > 2 \uparrow^{11} 2 \uparrow^{11} 3</math>. | ||
This bound is pretty tight: <math>\sigma < 2 \uparrow^{11} 2 \uparrow^{11} 4 = 2 \uparrow^{12} 4</math>. |
Revision as of 22:14, 13 May 2025
1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF
(bbch) is a halting BB(7) TM which runs for over steps.
Analysis by Shawn Ligocki
Consider general configurations matching the regex:
Low level rules
01 1 01^n 0011100 A> 00 --> 1 01^n+2 0011100 A> 01^3 11 01^n 0011100 A> 0^6 --> 1 01^n+5 1 01 0011100 A> 01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6 --> 1 01^n+6 (1 01)^k 11 01 0011100 A> 011 (1 01)^k 11 01^n 0011100 A> 0^2 --> 1 Z> 111 01^n+1 00 101^k+2
Mid level rules
Let
and let B(a; [x]*k, y, ...)
= (In other words, [x]*k
represents k repeats of the value x in a config).
then
B(a; b+1, ...) -> B(2a+4; b, ...) B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...) B(a; [0]*k) -> Halt(3a + 2k + 9) Start at step 8178: B(2, [1]*12)
High level rule
Let
then
Bound
Let
then
and
and so this TM halts with a sigma score of
Note that and so for ,
and so this TM halts with sigma score .
This bound is pretty tight: .