1RB0RA 1LC1LF 1RD0LB 1RA1LE 1RZ0LC 1RG1LD 0RG0RF: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} {{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is a halting BB(7) TM which runs for over <math>2 \uparrow^{12} 2 \uparrow^{12} 3</math> steps. == Analysis by Shawn Ligocki == Consider general configurations matching the regex: <math>0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty</math> === Low level rules === <pre> 01 1 01^n 0011100 A> 00 -->...") |
(Fix broken math) |
||
Line 3: | Line 3: | ||
== Analysis by Shawn Ligocki == | == Analysis by Shawn Ligocki == | ||
Consider general configurations matching the regex: <math>0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \ | Consider general configurations matching the regex: | ||
<math display="block">0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \textrm{A>} \; 0^\infty</math> | |||
=== Low level rules === | === Low level rules === | ||
Line 16: | Line 18: | ||
Let | Let | ||
<math display=block> | <math display="block"> | ||
B(a; b, c, ..., z) = 0^\infty \; 111 \; (01)^{3z+1} \; 1 \; \cdots \; 1 (01)^{3c+1} \; 1 \; (01)^{3b+1} \; 1 \; (01)^0 \; 1 \; (01)^{3a+1} \; 0011100 \; \ | B(a; b, c, ..., z) = 0^\infty \; 111 \; (01)^{3z+1} \; 1 \; \cdots \; 1 (01)^{3c+1} \; 1 \; (01)^{3b+1} \; 1 \; (01)^0 \; 1 \; (01)^{3a+1} \; 0011100 \; \textrm{A>} \; 0^\infty | ||
</math> | </math> | ||
Line 42: | Line 44: | ||
then | then | ||
<math display=block> | <math display="block"> | ||
B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(f_k^n(a); \underbrace{0, \cdots, 0}_k, | B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(f_k^n(a); \underbrace{0, \cdots, 0}_k, 0, ...) | ||
</math> | </math> | ||
Line 49: | Line 51: | ||
Let | Let | ||
<math display=block>\begin{array}{l} | <math display="block">\begin{array}{l} | ||
a_0 & = & 2 \\ | a_0 & = & 2 \\ | ||
a_{k+1} & = & f_k(a_k) \\ | a_{k+1} & = & f_k(a_k) \\ | ||
\end{array} | |||
</math> | </math> | ||
then | then | ||
<math display=block> | <math display="block"> | ||
B(a_0; \underbrace{1, \cdots, 1}_k) \to B(a_k, \underbrace{0, \cdots, 0}_k) | B(a_0; \underbrace{1, \cdots, 1}_k) | ||
\to B(a_k, \underbrace{0, \cdots, 0}_k) | |||
\to \text{Halt}(3 a_k + 2 k + 9) | |||
</math>and | |||
<math display="block"> | |||
\textrm{Start} \to B(a_0; \underbrace{1, \cdots, 1}_{12}) | |||
</math> | </math> | ||
and so this TM halts with a sigma score of <math> 3 a_{12} + 33 </math> | and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math> | ||
Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>, | Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>, | ||
<math display=block> | <math display="block"> | ||
a_k + 4 > 2 \uparrow^k 2 \uparrow^k 3 | a_k + 4 > 2 \uparrow^k 2 \uparrow^k 3 | ||
</math> | </math> |
Revision as of 20:14, 13 May 2025
1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF
(bbch) is a halting BB(7) TM which runs for over steps.
Analysis by Shawn Ligocki
Consider general configurations matching the regex:
Low level rules
01 1 01^n 0011100 A> 00 --> 1 01^n+2 0011100 A> 01^3 11 01^n 0011100 A> 0^6 --> 1 01^n+5 1 01 0011100 A> 01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6 --> 1 01^n+6 (1 01)^k 11 01 0011100 A> 011 (1 01)^k 11 01^n 0011100 A> 0^2 --> 1 Z> 111 01^n+1 00 101^k+2
Mid level rules
Let
and let B(a; [x]*k, y, ...)
= (In other words, [x]*k
represents k repeats of the value x in a config).
then
B(a; b+1, ...) -> B(2a+4; b, ...) B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...) B(a; [0]*k) -> Halt(3a + 2k + 9) Start at step 8178: B(2, [1]*12)
High level rule
Let
then
Bound
Let
then
and
and so this TM halts with a sigma score of
Note that and so for ,
and so this TM halts with sigma score .
This bound is pretty tight: .