1RB0RA 1LC1LF 1RD0LB 1RA1LE 1RZ0LC 1RG1LD 0RG0RF: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Created page with "{{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} {{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is a halting BB(7) TM which runs for over <math>2 \uparrow^{12} 2 \uparrow^{12} 3</math> steps. == Analysis by Shawn Ligocki == Consider general configurations matching the regex: <math>0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty</math> === Low level rules === <pre> 01 1 01^n 0011100 A> 00 -->...")
 
(Fix broken math)
Line 3: Line 3:


== Analysis by Shawn Ligocki ==
== Analysis by Shawn Ligocki ==
Consider general configurations matching the regex: <math>0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty</math>
Consider general configurations matching the regex:
 
<math display="block">0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \textrm{A>} \; 0^\infty</math>


=== Low level rules ===
=== Low level rules ===
Line 16: Line 18:
Let
Let


<math display=block>
<math display="block">
B(a; b, c, ..., z) = 0^\infty \; 111 \; (01)^{3z+1} \; 1 \; \cdots \; 1 (01)^{3c+1} \; 1 \; (01)^{3b+1} \; 1 \; (01)^0 \; 1 \; (01)^{3a+1} \; 0011100 \; \text{A>} \; 0^\infty
B(a; b, c, ..., z) = 0^\infty \; 111 \; (01)^{3z+1} \; 1 \; \cdots \; 1 (01)^{3c+1} \; 1 \; (01)^{3b+1} \; 1 \; (01)^0 \; 1 \; (01)^{3a+1} \; 0011100 \; \textrm{A>} \; 0^\infty
</math>
</math>


Line 42: Line 44:
then
then


<math display=block>
<math display="block">
B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(f_k^n(a); \underbrace{0, \cdots, 0}_k, n, ...)
B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(f_k^n(a); \underbrace{0, \cdots, 0}_k, 0, ...)
</math>
</math>


Line 49: Line 51:
Let
Let


<math display=block>\begin{array}{l}
<math display="block">\begin{array}{l}
a_0 & = & 2 \\
a_0 & = & 2 \\
a_{k+1} & = & f_k(a_k) \\
a_{k+1} & = & f_k(a_k) \\
\end{array}
</math>
</math>


then
then


<math display=block>
<math display="block">
B(a_0; \underbrace{1, \cdots, 1}_k) \to B(a_k, \underbrace{0, \cdots, 0}_k)
B(a_0; \underbrace{1, \cdots, 1}_k)
    \to B(a_k, \underbrace{0, \cdots, 0}_k)
    \to \text{Halt}(3 a_k + 2 k + 9)
</math>and
 
<math display="block">
\textrm{Start} \to B(a_0; \underbrace{1, \cdots, 1}_{12})
</math>
</math>


and so this TM halts with a sigma score of <math> 3 a_{12} + 33 </math>
and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math>


Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>,
Note that <math>f_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>,


<math display=block>
<math display="block">
a_k + 4 > 2 \uparrow^k 2 \uparrow^k 3
a_k + 4 > 2 \uparrow^k 2 \uparrow^k 3
</math>
</math>

Revision as of 20:14, 13 May 2025

1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch) is a halting BB(7) TM which runs for over steps.

Analysis by Shawn Ligocki

Consider general configurations matching the regex:

Low level rules

              01 1 01^n 0011100 A> 00   -->                 1 01^n+2 0011100 A>
           01^3 11 01^n 0011100 A> 0^6  -->            1 01^n+5 1 01 0011100 A>
01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6  -->  1 01^n+6 (1 01)^k 11 01 0011100 A>
 011 (1 01)^k   11 01^n 0011100 A> 0^2  -->  1 Z> 111 01^n+1 00 101^k+2

Mid level rules

Let

and let B(a; [x]*k, y, ...) = (In other words, [x]*k represents k repeats of the value x in a config).

then

B(a; b+1, ...) -> B(2a+4; b, ...)
B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...)
B(a; [0]*k) -> Halt(3a + 2k + 9)

Start at step 8178: B(2, [1]*12)

High level rule

Let

then

Bound

Let

then

and

and so this TM halts with a sigma score of

Note that and so for ,

and so this TM halts with sigma score .

This bound is pretty tight: .