User:MrSolis/Playground: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Blanked the page)
Tags: Blanking Manual revert
No edit summary
Line 1: Line 1:
{{unsolved|Does Antihydra run forever?}}{{TM|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA|undecided}}
[[File:Antihydra-depiction.png|right|thumb|Artistic depiction of Antihydra by Jadeix]]
'''ANTIHYDRA PAGE REVAMP (WIP)'''


'''Antihydra''' is a [[BB(6)]] [[Cryptid]]. It is similar to [[Hydra]] in that it halts if and only if the sequence
<math display="block">H_{n+1}=\bigg\lfloor\frac{3}{2}H_n\bigg\rfloor,H_0=8,</math>
ever has more than twice the number of odd terms as the amount of even terms.
== Analysis ==
===Rules===
Let <math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>. Then,
<math display="block">\begin{array}{|lll|}\hline
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\
A(0,2b+1)&\xrightarrow{3b^2+9b-1}& 0^\infty\;\textrm{<F}\;110\;1^{3b}\;0^\infty,\\
A(a+1,2b+1)&\xrightarrow{3b^2+12b+5}& A(a,3b+3).\\\hline
\end{array}</math>
===Proof===
Consider the partial configuration <math>P(m,n):=0\;1^m\;\textrm{E>}\;0\;1^n\;0^\infty</math>. The configuration after two steps is <math>0\;1^{m-1}\;0\;\textrm{A>}\;1^{n+1}\;0^\infty</math>. We note the following shift rule:
<math display="block">\begin{array}{|c|}\hline\textrm{A>}\;1^s\xrightarrow{s}1^s\;\textrm{A>}\\\hline\end{array}</math>
As a result, we get <math>0\;1^{m-1}\;0\;1^{n+1}\;\textrm{A>}\;0^\infty</math> after <math>n+1</math> steps. Advancing two steps produces <math>0\;1^{m-1}\;0\;1^{n+2}\;\textrm{<C}\;0^\infty</math>. A second shift rule is useful here:
<math display="block">\begin{array}{|c|}\hline1^s\;\textrm{<C}\xrightarrow{s}\textrm{<C}\;1^s\\\hline\end{array}</math>
This allows us to reach <math>0\;1^{m-1}\;0\;\textrm{<C}\;1^{n+2}\;0^\infty</math> in <math>n+2</math> steps. Moving five more steps gets us to <math>0\;1^{m-2}\;\textrm{E>}\;0\;1^{n+3}\;0^\infty</math>, which is the same configuration as <math>P(m-2,n+3)</math>. Accounting for the head movement creates the condition that <math>m\ge 4</math>. In summary:
<math display="block">\begin{array}{|c|}\hline P(m,n)\xrightarrow{2n+12}P(m-2,n+3)\text{ if }m\ge 4.\\\hline\end{array}</math>
With <math>A(a,b)</math> we have <math>P(b,0)</math>. As a result, we can apply this rule <math display="inline>\big\lfloor\frac{1}{2}b\Big\rfloor-1</math> times (assuming <math>b\ge 4</math>), which creates two possible scenarios:
#If <math>b\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(b/2)-2}(2\times 3i+12)=\textstyle\frac{3}{4}b^2+\frac{3}{2}b-6</math> steps we arrive at <math display="inline">P\Big(2,\frac{3}{2}b-3\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;011\;\textrm{E>}\;0\;1^{(3b)/2-3}\;0^\infty</math>. After <math>3b+4</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<C}\;00\;1^{(3b)/2}\;0^\infty</math>, which then leads to <math>0^\infty\;\textrm{<C}\;1^a\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a</math> steps. After five more steps, we reach <math>0^\infty\;1\;\textrm{E>}\;1^{a+2}\;00\;1^{(3b)/2}\;0^\infty</math>, from which another shift rule must be applied:<math display="block">\begin{array}{|c|}\hline\textrm{E>}\;1^s\xrightarrow{s}1^s\;\textrm{E>}\\\hline\end{array}</math>Doing so allows us to get the configuration <math>0^\infty\;1^{a+3}\;\textrm{E>}\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a+2</math> steps. In six steps we have <math>0^\infty\;1^{a+2}\;011\;\textrm{E>}\;1^{(3b)/2}\;0^\infty</math>, so we use the shift rule again, ending at <math>0^\infty\;1^{a+2}\;0\;1^{(3b)/2+2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a+2,\frac{3}{2}b+2\Big)</math>, <math display="inline">\frac{3}{2}b</math> steps later. This gives a total of <math display="inline">2a+\frac{3}{4}b^2+6b+11</math> steps.
#If <math>b\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{4}b^2-\frac{27}{4}</math> steps we arrive at <math display="inline">P\Big(3,\frac{3b-9}{2}\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;0111\;\textrm{E>}\;0\;1^{(3b-9)/2}\;0^\infty</math>. After <math>3b+2</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty</math>. If <math>a=0</math>, then the undefined F0 transition is reached in <math display="inline">\frac{3}{4}b^2+3b-\frac{19}{4}</math> steps total. Otherwise, in five steps the configuration is <math>0^\infty\;1^{a-1}\;0111\;\textrm{<E}\;1^{(3b-3)/2}\;0^\infty</math>. One final shift rule results in the configuration <math>0^\infty\;1^{a-1}\;0\;1^{(3b+3)/2}\;\textrm{E>}\;0^\infty=A\bigg(a-1,\frac{3b+3}{2}\bigg)</math> after <math>\frac{3}{2}b+1</math> steps. This gives a total of <math display="inline">\frac{3}{4}b^2+\frac{9}{2}b-\frac{1}{4}</math> steps.
The information above can be summarized as
<math display="block">A(a,b)\rightarrow\begin{cases}A\big(a+2,\frac{3}{2}b+2\big)&\text{if }b\equiv0\pmod{2}\\0^\infty\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty&\text{if }b\equiv1\pmod{2}\text{ and }a=0\\A\big(a-1,\frac{3b+3}{2}\big)&\text{otherwise}\end{cases}</math>
Substituting <math>b\leftarrow 2b</math> for the first case and <math>b\leftarrow 2b+1</math> for the other two yields the final result.
== Trajectory ==
TODO
==References==

Revision as of 18:59, 15 February 2025

Unsolved problem:
Does Antihydra run forever?

1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA (bbch)

Artistic depiction of Antihydra by Jadeix

ANTIHYDRA PAGE REVAMP (WIP)

Antihydra is a BB(6) Cryptid. It is similar to Hydra in that it halts if and only if the sequence

ever has more than twice the number of odd terms as the amount of even terms.

Analysis

Rules

Let . Then,

Proof

Consider the partial configuration . The configuration after two steps is . We note the following shift rule:

As a result, we get after steps. Advancing two steps produces . A second shift rule is useful here:
This allows us to reach in steps. Moving five more steps gets us to , which is the same configuration as . Accounting for the head movement creates the condition that . In summary:
With we have . As a result, we can apply this rule times (assuming ), which creates two possible scenarios:

  1. If , then in steps we arrive at . The matching complete configuration is . After steps this becomes , which then leads to in steps. After five more steps, we reach , from which another shift rule must be applied:
    Doing so allows us to get the configuration in steps. In six steps we have , so we use the shift rule again, ending at , equal to , steps later. This gives a total of steps.
  2. If , then in steps we arrive at . The matching complete configuration is . After steps this becomes . If , then the undefined F0 transition is reached in steps total. Otherwise, in five steps the configuration is . One final shift rule results in the configuration after steps. This gives a total of steps.

The information above can be summarized as

Substituting for the first case and for the other two yields the final result.

Trajectory

TODO

References