Consider the partial configuration <math>P(m,n):=0\;1^m\;\textrm{E>}\;0\;1^n\;0^\infty</math>. The configuration after two steps is <math>0\;1^{m-1}\;0\;\textrm{A>}\;1^{n+1}\;0^\infty</math>. We note the following shift rule:
As a result, we get <math>0\;1^{m-1}\;0\;1^{n+1}\;\textrm{A>}\;0^\infty</math> after <math>n+1</math> steps. Advancing two steps produces <math>0\;1^{m-1}\;0\;1^{n+2}\;\textrm{<C}\;0^\infty</math>. A second shift rule is useful here:
This allows us to reach <math>0\;1^{m-1}\;0\;\textrm{<C}\;1^{n+2}\;0^\infty</math> in <math>n+2</math> steps. Moving five more steps gets us to <math>0\;1^{m-2}\;\textrm{E>}\;0\;1^{n+3}\;0^\infty</math>, which is the same configuration as <math>P(m-2,n+3)</math>. Accounting for the head movement creates the condition that <math>m\ge 4</math>. In summary:
<math display="block">\begin{array}{|c|}\hline P(m,n)\xrightarrow{2n+12}P(m-2,n+3)\text{ if }m\ge 4.\\\hline\end{array}</math>
With <math>A(a,b)</math> we have <math>P(b,0)</math>. As a result, we can apply this rule <math display="inline>\big\lfloor\frac{1}{2}b\Big\rfloor-1</math> times (assuming <math>b\ge 4</math>), which creates two possible scenarios:
#If <math>b\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(b/2)-2}(2\times 3i+12)=\textstyle\frac{3}{4}b^2+\frac{3}{2}b-6</math> steps we arrive at <math display="inline">P\Big(2,\frac{3}{2}b-3\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;011\;\textrm{E>}\;0\;1^{(3b)/2-3}\;0^\infty</math>. After <math>3b+4</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<C}\;00\;1^{(3b)/2}\;0^\infty</math>, which then leads to <math>0^\infty\;\textrm{<C}\;1^a\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a</math> steps. After five more steps, we reach <math>0^\infty\;1\;\textrm{E>}\;1^{a+2}\;00\;1^{(3b)/2}\;0^\infty</math>, from which another shift rule must be applied:<math display="block">\begin{array}{|c|}\hline\textrm{E>}\;1^s\xrightarrow{s}1^s\;\textrm{E>}\\\hline\end{array}</math>Doing so allows us to get the configuration <math>0^\infty\;1^{a+3}\;\textrm{E>}\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a+2</math> steps. In six steps we have <math>0^\infty\;1^{a+2}\;011\;\textrm{E>}\;1^{(3b)/2}\;0^\infty</math>, so we use the shift rule again, ending at <math>0^\infty\;1^{a+2}\;0\;1^{(3b)/2+2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a+2,\frac{3}{2}b+2\Big)</math>, <math display="inline">\frac{3}{2}b</math> steps later. This gives a total of <math display="inline">2a+\frac{3}{4}b^2+6b+11</math> steps.
#If <math>b\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{4}b^2-\frac{27}{4}</math> steps we arrive at <math display="inline">P\Big(3,\frac{3b-9}{2}\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;0111\;\textrm{E>}\;0\;1^{(3b-9)/2}\;0^\infty</math>. After <math>3b+2</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty</math>. If <math>a=0</math>, then the undefined F0 transition is reached in <math display="inline">\frac{3}{4}b^2+3b-\frac{19}{4}</math> steps total. Otherwise, in five steps the configuration is <math>0^\infty\;1^{a-1}\;0111\;\textrm{<E}\;1^{(3b-3)/2}\;0^\infty</math>. One final shift rule results in the configuration <math>0^\infty\;1^{a-1}\;0\;1^{(3b+3)/2}\;\textrm{E>}\;0^\infty=A\bigg(a-1,\frac{3b+3}{2}\bigg)</math> after <math>\frac{3}{2}b+1</math> steps. This gives a total of <math display="inline">\frac{3}{4}b^2+\frac{9}{2}b-\frac{1}{4}</math> steps.
The information above can be summarized as
<math display="block">A(a,b)\rightarrow\begin{cases}A\big(a+2,\frac{3}{2}b+2\big)&\text{if }b\equiv0\pmod{2}\\0^\infty\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty&\text{if }b\equiv1\pmod{2}\text{ and }a=0\\A\big(a-1,\frac{3b+3}{2}\big)&\text{otherwise}\end{cases}</math>
Substituting <math>b\leftarrow 2b</math> for the first case and <math>b\leftarrow 2b+1</math> for the other two yields the final result.
Consider the partial configuration . The configuration after two steps is . We note the following shift rule:
As a result, we get after steps. Advancing two steps produces . A second shift rule is useful here:
This allows us to reach in steps. Moving five more steps gets us to , which is the same configuration as . Accounting for the head movement creates the condition that . In summary:
With we have . As a result, we can apply this rule times (assuming ), which creates two possible scenarios:
If , then in steps we arrive at . The matching complete configuration is . After steps this becomes , which then leads to in steps. After five more steps, we reach , from which another shift rule must be applied:
Doing so allows us to get the configuration in steps. In six steps we have , so we use the shift rule again, ending at , equal to , steps later. This gives a total of steps.
If , then in steps we arrive at . The matching complete configuration is . After steps this becomes . If , then the undefined F0 transition is reached in steps total. Otherwise, in five steps the configuration is . One final shift rule results in the configuration after steps. This gives a total of steps.
The information above can be summarized as
Substituting for the first case and for the other two yields the final result.