5-state busy beaver winner: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 25: Line 25:


The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3}\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}\end{cases}</math>
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3},\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3},\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}.\end{cases}</math>
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
== Trajectory ==
== Trajectory ==
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
[[File:BB5Champ 0-365.gif|right|thumb|An animation of <math>g(0)</math> becoming <math>g(34)</math> in 365 steps (''[https://wiki.bbchallenge.org/w/images/f/f1/BB5Champ_0-365.gif click to view]'').]]
[[File:BB5Champ 0-365.gif|right|thumb|An animation of <math>g(0)</math> becoming <math>g(34)</math> in 365 steps (''[https://wiki.bbchallenge.org/w/images/f/f1/BB5Champ_0-365.gif click to view]'').]]
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
<math display="block">\begin{array}{|l|}\hline\begin{array}{lllllllllll}g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\
<math display="block">\begin{array}{|l|}\hline\begin{array}{lllllllllll}g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\

Revision as of 00:44, 14 February 2025

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.

Analysis

Rules

Let . Then[2],

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which in five steps becomes , equal to .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).

The information above can be summarized as[3]

Substituting , , and to each of these cases respectively gives us our final result.

Trajectory

The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:

An animation of becoming in 365 steps (click to view).

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
  3. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf