5-state busy beaver winner: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | {{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | ||
The 5-state busy beaver ([[BB(5)]]) | The 5-state busy beaver ([[BB(5)]]) winner is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. Discovered by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>, this machine proved that <math>\operatorname{BB}(5)\ge 47176870</math> and <math>\Sigma(5)\ge 4098</math> at the time. | ||
== Analysis == | |||
== | ===Rules=== | ||
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>, | |||
<math | <math display="block">\begin{array}{|lll|}\hline | ||
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\ | |||
g(3x+1)&\xrightarrow{5x^2+25x+27}&g(5x+9),\\ | |||
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline | |||
<math display="block">\begin{ | |||
\ | |||
\end{array}</math> | \end{array}</math> | ||
===Proof=== | |||
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule: | |||
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math> | |||
Using this shift rule, we get <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math> after <math>m</math> steps. If <math>n=0</math>, then we get <math>0^\infty\;1^{m+4}\;\textrm{<A}\;1\;0^\infty</math> four steps later. Another shift rule is needed here: | |||
<math display="block">\begin{array}{|c|}\hline1^{3a}\;\textrm{<A}\xrightarrow{3a}\textrm{<A}\;001^a\\\hline\end{array}</math> | |||
In this instance, <math display="inline">\Big\lfloor\frac{m+4}{3}\Big\rfloor</math> is substituted for <math>a</math>, which creates three different scenarios depending on the value of <math>m</math> modulo 3. They are as follows: | |||
# If <math>m+4\equiv0\ (\operatorname{mod}3)</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math display="inline">C\Big(0,\frac{m+4}{3}\Big)</math>. | |||
# If <math>m+4\equiv1\ (\operatorname{mod}3)</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which in five steps becomes <math>0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, equal to <math display="inline">C\Big(3,\frac{m+3}{3}\Big)</math>. | |||
# If <math>m+4\equiv2\ (\operatorname{mod}3)</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>. | |||
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule: | |||
<math display="block">\begin{array}{|c|}\hline1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a\\\hline\end{array}</math> | |||
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, equal to <math>C(m+5,n-1)</math>. To summarize: | |||
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math> | |||
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}x+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total). | |||
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | |||
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3}\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}\end{cases}</math> | |||
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | |||
== Trajectory == | |||
[[File:BB5Champ 0-365.gif|right|thumb|An animation of <math>g(0)</math> becoming <math>g(34)</math> in 365 steps (''click to view'').]] | |||
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: | |||
<math display="block">\begin{array}{|lllllllllll|}\hline g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\ | |||
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\ | |||
g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}\\ | |||
g(946)&\xrightarrow{504027}&g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}\\ | |||
g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576} &0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math> | |||
== References == | == References == |
Revision as of 22:46, 8 February 2025
The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.
Analysis
Rules
Let . Then[2],
Proof
Consider the configuration . After one step this configuration becomes . We note the following shift rule:
Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:
- If , then in steps we arrive at , which is the same configuration as .
- If , then in steps we arrive at , which in five steps becomes , equal to .
- If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .
Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:
Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).
The information above can be summarized as[3]
Substituting , , and to each of these cases respectively gives us our final result.
Trajectory

The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:
References
- ↑ H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
- ↑ Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
- ↑ Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf