User:MrSolis/Playground: Difference between revisions
Jump to navigation
Jump to search
(Visual touch-ups) |
mNo edit summary |
||
Line 22: | Line 22: | ||
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, equal to <math>C(m+5,n-1)</math>. To summarize: | Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, equal to <math>C(m+5,n-1)</math>. To summarize: | ||
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math> | <math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math> | ||
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total). | We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}x+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total). | ||
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | ||
Line 28: | Line 28: | ||
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | ||
== Trajectory == | == Trajectory == | ||
The initial blank tape represents <math>g(0)</math>, and the rules are iterated 15 times before halting: | The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: | ||
<math display="block">\begin{array}{|lllllllllll|}\hline g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\ | <math display="block">\begin{array}{|lllllllllll|}\hline g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\ | ||
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\ | g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\ |
Revision as of 19:38, 2 February 2025
5-state busy beaver winner (WIP Revamp)
The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.
Analysis
Rules
Let . Then[2],
Proof
Consider the configuration . After one step this configuration becomes . We note the following shift rule:
Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:
- If , then in steps we arrive at , which is the same configuration as .
- If , then in steps we arrive at , which is five steps becomes , equal to .
- If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .
Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:
Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).
The information above can be summarized as[3]
Substituting , , and to each of these cases respectively gives us our final result.
Trajectory
The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:
References
- ↑ H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
- ↑ Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
- ↑ Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf