User:MrSolis/Playground: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
(Visual touch-ups)
Line 4: Line 4:
===Rules===
===Rules===
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>,
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>,
<math display="block">\begin{array}{lll}\\
<math display="block">\begin{array}{|lll|}\hline
g(3x)&\phantom{}\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x)&\phantom{}\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x+1)&\phantom{}\xrightarrow{5x^2+25x+27}&g(5x+9),\\
g(3x+1)&\phantom{}\xrightarrow{5x^2+25x+27}&g(5x+9),\\
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline
\end{array}</math>
\end{array}</math>
===Proof===
===Proof===
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty\phantom{}</math>. We note the following shift rule:
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty\phantom{}</math>. We note the following shift rule:
<math display="block">\begin{array}{c}\\\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\phantom{}\end{array}</math>
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math>
Using this shift rule, we get <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math> after <math>m</math> steps. If <math>n=0</math>, then we get <math>0^\infty\;1^{m+4}\;\textrm{<A}\;1\;0^\infty</math> four steps later. Another shift rule is needed here:
Using this shift rule, we get <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math> after <math>m</math> steps. If <math>n=0</math>, then we get <math>0^\infty\;1^{m+4}\;\textrm{<A}\;1\;0^\infty</math> four steps later. Another shift rule is needed here:
<math display="block">1^{3a}\;\textrm{<A}\xrightarrow{3a}\textrm{<A}\;001^a</math>
<math display="block">\begin{array}{|c|}\hline1^{3a}\;\textrm{<A}\xrightarrow{3a}\textrm{<A}\;001^a\\\hline\end{array}</math>
In this instance, <math>\lfloor\frac{m+4}{3}\rfloor</math> is substituted for <math>a</math>, which creates three different scenarios depending on the value of <math>m</math> modulo 3. They are as follows:
In this instance, <math display="inline">\Big\lfloor\frac{m+4}{3}\Big\rfloor</math> is substituted for <math>a</math>, which creates three different scenarios depending on the value of <math>m</math> modulo 3. They are as follows:
# If <math>m+4\equiv 0\pmod{3}</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math>C(0,\frac{m+4}{3})</math>.
# If <math>m+4\equiv0\ (\operatorname{mod}3)</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math display="inline">C\Big(0,\frac{m+4}{3}\Big)</math>.
# If <math>m+4\equiv 1\pmod{3}</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, or <math>C(3,\frac{m+3}{3})</math>.
# If <math>m+4\equiv1\ (\operatorname{mod}3)</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, equal to <math display="inline">C\Big(3,\frac{m+3}{3}\Big)</math>.
# If <math>m+4\equiv 2\pmod{3}</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>.
# If <math>m+4\equiv2\ (\operatorname{mod}3)</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>.
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule:
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule:
<math display="block">1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a</math>
<math display="block">\begin{array}{|c|}\hline1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a\\\hline\end{array}</math>
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, or <math>C(m+5,n-1)</math>. To summarize:
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, equal to <math>C(m+5,n-1)</math>. To summarize:
<math display="block">C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.</math>
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math>
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv 0\pmod{3}</math>, we then get <math>C(0,\frac{1}{3}x+1)</math> and the above rule is applied until we reach <math>C(\frac{5}{3}x+5,0)</math>, equivalent to <math>g(\frac{5}{3}x+6)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\frac{5}{9}x^2+\frac{13}{3}x+8\phantom{}</math> steps for a total of <math>\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv 1\pmod{3}</math>, we then get <math>C(3,\frac{x+2}{3})</math> which reaches <math>C(3+\frac{5(x+2)}{3},0)\phantom{}</math>, or <math>g(\frac{5x+22}{3})</math>, in <math>\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math>\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).


The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
Line 29: Line 29:
== Trajectory ==
== Trajectory ==
The initial blank tape represents <math>g(0)</math>, and the rules are iterated 15 times before halting:
The initial blank tape represents <math>g(0)</math>, and the rules are iterated 15 times before halting:
<math display="block">\begin{array}{lllllllllll}\\g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\
<math display="block">\begin{array}{|lllllllllll|}\hline g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\
g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}\\
g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}\\
g(946)&\xrightarrow{504027}&g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}\\
g(946)&\xrightarrow{504027}&g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}\\
g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576} &0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\end{array}</math>
g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576} &0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math>
== References ==
== References ==

Revision as of 19:35, 2 February 2025

5-state busy beaver winner (WIP Revamp)

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.

Analysis

Rules

Let . Then[2],

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which is five steps becomes , equal to .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).

The information above can be summarized as[3]

Substituting , , and to each of these cases respectively gives us our final result.

Trajectory

The initial blank tape represents , and the rules are iterated 15 times before halting:

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
  3. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf