User:MrSolis/Playground: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
# If <math>m+4\equiv 0\pmod{3}</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math>C(0,\frac{m+4}{3})</math>.
# If <math>m+4\equiv 0\pmod{3}</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math>C(0,\frac{m+4}{3})</math>.
# If <math>m+4\equiv 1\pmod{3}</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, or <math>C(3,\frac{m+3}{3})</math>.
# If <math>m+4\equiv 1\pmod{3}</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, or <math>C(3,\frac{m+3}{3})</math>.
# If <math>m+4\equiv 2\pmod{3}</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,n)</math>.
# If <math>m+4\equiv 2\pmod{3}</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>.
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule:
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule:
<math display="block">1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a</math>
<math display="block">1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a</math>
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, or <math>C(m+5,n-1)</math>. To summarize:
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, or <math>C(m+5,n-1)</math>. To summarize:
<math display="block">C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.</math>
<math display="block">C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.</math>
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv 0\pmod{3}</math>, we then get <math>C(0,\frac{1}{3}x+1)</math> and the above rule is applied until we reach <math>C(\frac{5}{3}x+5,0)</math>, equivalent to <math>g(\frac{5}{3}x+6)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\frac{5}{9}x^2+\frac{13}{3}x+8\phantom{}</math> steps for a total of <math>\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv 1\pmod{3}</math>, we then get <math>C(3,\frac{x+2}{3})</math> which reaches <math>C(3+\frac{5(x+2)}{3})</math>, or <math>g(\frac{5x+22}{3})</math>, in <math>\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math>\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv 0\pmod{3}</math>, we then get <math>C(0,\frac{1}{3}x+1)</math> and the above rule is applied until we reach <math>C(\frac{5}{3}x+5,0)</math>, equivalent to <math>g(\frac{5}{3}x+6)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\frac{5}{9}x^2+\frac{13}{3}x+8\phantom{}</math> steps for a total of <math>\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv 1\pmod{3}</math>, we then get <math>C(3,\frac{x+2}{3})</math> which reaches <math>C(3+\frac{5(x+2)}{3},0)\phantom{}</math>, or <math>g(\frac{5x+22}{3})</math>, in <math>\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math>\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).


The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>

Revision as of 22:53, 1 February 2025

5-state busy beaver winner (WIP Revamp)

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.

Analysis

Rules

Let . Then[2],

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which is five steps becomes , or .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , or . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equivalent to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , or , in steps ( steps total).

The information above can be summarized as[3]

Substituting , , and to each of these cases respectively gives us our final result.

Trajectory

The initial blank tape represents , and the rules are iterated 15 times before halting:

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
  3. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf