User:MrSolis/Playground: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
# If <math>m+4\equiv 0\pmod{3}</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math>C(0,\frac{m+4}{3})</math>. | # If <math>m+4\equiv 0\pmod{3}</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math>C(0,\frac{m+4}{3})</math>. | ||
# If <math>m+4\equiv 1\pmod{3}</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, or <math>C(3,\frac{m+3}{3})</math>. | # If <math>m+4\equiv 1\pmod{3}</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, or <math>C(3,\frac{m+3}{3})</math>. | ||
# If <math>m+4\equiv 2\pmod{3}</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m, | # If <math>m+4\equiv 2\pmod{3}</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>. | ||
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule: | Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule: | ||
<math display="block">1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a</math> | <math display="block">1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a</math> | ||
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, or <math>C(m+5,n-1)</math>. To summarize: | Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, or <math>C(m+5,n-1)</math>. To summarize: | ||
<math display="block">C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.</math> | <math display="block">C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.</math> | ||
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv 0\pmod{3}</math>, we then get <math>C(0,\frac{1}{3}x+1)</math> and the above rule is applied until we reach <math>C(\frac{5}{3}x+5,0)</math>, equivalent to <math>g(\frac{5}{3}x+6)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\frac{5}{9}x^2+\frac{13}{3}x+8\phantom{}</math> steps for a total of <math>\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv 1\pmod{3}</math>, we then get <math>C(3,\frac{x+2}{3})</math> which reaches <math>C(3+\frac{5(x+2)}{3})</math>, or <math>g(\frac{5x+22}{3})</math>, in <math>\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math>\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total). | We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv 0\pmod{3}</math>, we then get <math>C(0,\frac{1}{3}x+1)</math> and the above rule is applied until we reach <math>C(\frac{5}{3}x+5,0)</math>, equivalent to <math>g(\frac{5}{3}x+6)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\frac{5}{9}x^2+\frac{13}{3}x+8\phantom{}</math> steps for a total of <math>\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv 1\pmod{3}</math>, we then get <math>C(3,\frac{x+2}{3})</math> which reaches <math>C(3+\frac{5(x+2)}{3},0)\phantom{}</math>, or <math>g(\frac{5x+22}{3})</math>, in <math>\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math>\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total). | ||
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> |
Revision as of 22:53, 1 February 2025
5-state busy beaver winner (WIP Revamp)
The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.
Analysis
Rules
Let . Then[2],
Proof
Consider the configuration . After one step this configuration becomes . We note the following shift rule:
Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:
- If , then in steps we arrive at , which is the same configuration as .
- If , then in steps we arrive at , which is five steps becomes , or .
- If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .
Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:
Doing so takes us to in steps, which after one step becomes the configuration , or . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equivalent to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , or , in steps ( steps total).
The information above can be summarized as[3]
Substituting , , and to each of these cases respectively gives us our final result.
Trajectory
The initial blank tape represents , and the rules are iterated 15 times before halting:
References
- ↑ H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
- ↑ Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
- ↑ Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf