User:MrSolis/Playground: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
No edit summary
MrSolis (talk | contribs)
No edit summary
Line 1: Line 1:
=5-state busy beaver winner (Remake)=
=5-state busy beaver winner (WIP Revamp)=
The 5-state busy beaver ([[BB(5)]]) winner is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. Discovered by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>, this machine proved that <math>\operatorname{BB}(5)\ge 47176870\phantom{}</math> and <math>\Sigma(5)\ge 4098</math> at the time.
The 5-state busy beaver ([[BB(5)]]) winner is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. Discovered by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>, this machine proved that <math>\operatorname{BB}(5)\ge 47176870\phantom{}</math> and <math>\Sigma(5)\ge 4098</math> at the time.
== Analysis ==
== Analysis ==
===Rules===
===Rules===
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>,
<math display="block">\begin{array}{lll}
<math display="block">\begin{array}{lll}\\
g(3x)&\phantom{}\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x)&\phantom{}\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x+1)&\phantom{}\xrightarrow{5x^2+25x+27}&g(5x+9),\\
g(3x+1)&\phantom{}\xrightarrow{5x^2+25x+27}&g(5x+9),\\
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.
\end{array}</math>
\end{array}</math>
===Proof===
===Proof===
WIP
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty\phantom{}</math>. We note the following shift rule:
<math display="block">\begin{array}{c}\\\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\phantom{}\end{array}</math>
Using this shift rule, we get <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math> after <math>m</math> steps. If <math>n=0</math>, then we get <math>0^\infty\;1^{m+4}\;\textrm{<A}\;1\;0^\infty</math> four steps later. Another shift rule is needed here:
<math display="block">1^{3a}\;\textrm{<A}\xrightarrow{3a}\textrm{<A}\;001^a</math>
In this instance, <math>\lfloor\frac{m+4}{3}\rfloor</math> is substituted for <math>a</math>, which creates three different scenarios depending on the value of <math>m</math> modulo 3. They are as follows:
# If <math>m+4\equiv 0\pmod{3}</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math>C(0,\frac{m+4}{3})</math>.
# If <math>m+4\equiv 1\pmod{3}</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which is five steps becomes <math>\phantom{}0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, or <math>C(3,\frac{m+3}{3})</math>.
# If <math>m+4\equiv 2\pmod{3}</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,n)</math>.
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule:
<math display="block">1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a</math>
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;\phantom{}0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, or <math>C(m+5,n-1)</math>. To summarize:
<math display="block">C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.</math>
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv 0\pmod{3}</math>, we then get <math>C(0,\frac{1}{3}x+1)</math> and the above rule is applied until we reach <math>C(\frac{5}{3}x+5,0)</math>, equivalent to <math>g(\frac{5}{3}x+6)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\frac{5}{9}x^2+\frac{13}{3}x+8\phantom{}</math> steps for a total of <math>\frac{5}{9}x^2+\frac{19}{3}+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv 1\pmod{3}</math>, we then get <math>C(3,\frac{x+2}{3})</math> which reaches <math>C(3+\frac{5(x+2)}{3})</math>, or <math>g(\frac{5x+22}{3})</math>, in <math>\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math>\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).
 
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
<math display="block">g(x)\rightarrow\begin{cases}g\big(\frac{5}{3}x+6\big)&\text{if }x\equiv0\pmod{3}\\g\big(\frac{5x+22}{3}\big)&\text{if }x\equiv1\pmod{3}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}\end{cases}</math>
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
== Trajectory ==
The initial blank tape represents <math>g(0)</math>, and the rules are iterated 15 times before halting:
<math display="block">\begin{array}{lllllllllll}\\g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\
g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}\\
g(946)&\xrightarrow{504027}&g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}\\
g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576} &0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\end{array}</math>
== References ==

Revision as of 22:43, 1 February 2025

5-state busy beaver winner (WIP Revamp)

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that BB(5)47176870 and Σ(5)4098 at the time.

Analysis

Rules

Let g(x):=0<A1x0. Then[2], g(3x)5x2+19x+15g(5x+6),g(3x+1)5x2+25x+27g(5x+9),g(3x+2)6x+1201Z>01001x+110.

Proof

Consider the configuration C(m,n):=0<A1m001n10. After one step this configuration becomes 01B>1m001n10. We note the following shift rule: B>1aa1aB> Using this shift rule, we get 01m+1B>001n10 after m steps. If n=0, then we get 01m+4<A10 four steps later. Another shift rule is needed here: 13a<A3a<A001a In this instance, m+43 is substituted for a, which creates three different scenarios depending on the value of m modulo 3. They are as follows:

  1. If m+40(mod3), then in m+4 steps we arrive at 0<A001(m+4)/310, which is the same configuration as C(0,m+43).
  2. If m+41(mod3), then in m+3 steps we arrive at 01<A001(m+3)/310, which is five steps becomes 0<A111001(m+3)/310, or C(3,m+33).
  3. If m+42(mod3), then in m+2 steps we arrive at 011<A001(m+2)/310, which in three steps halts with the configuration 01Z>01001(m+2)/310, for a total of 2m+10 steps from C(m,n).

Returning to 01m+1B>001n10, if n1, then in three steps it changes into 01m+3<D1001n110. Here we can make use of one more shift rule: 1a<Da<D1a Doing so takes us to 0<D1m+4001n110 in m+3 steps, which after one step becomes the configuration 0<A1m+5001n110, or C(m+5,n1). To summarize: C(m,n)2m+8C(m+5,n1) if n1. We have g(x)=C(x1,0). As a result, if x0(mod3), we then get C(0,13x+1) and the above rule is applied until we reach C(53x+5,0), equivalent to g(53x+6), in i=0x/3(2×5i+8)=59x2+133x+8 steps for a total of 59x2+193+15 steps from g(x) (with g(0) we see the impossible configuration C(1,0), but it reaches g(6) in 15 steps regardless). However, if x1(mod3), we then get C(3,x+23) which reaches C(3+5(x+2)3), or g(5x+223), in 59x2+479x+749 steps (59x2+659x+1739 steps total).

The information above can be summarized as[3] g(x){g(53x+6)if x0(mod3)g(5x+223)if x1(mod3)01Z>01001(x+1)/310if x2(mod3) Substituting x3x, x3x+1, and x3x+2 to each of these cases respectively gives us our final result.

Trajectory

The initial blank tape represents g(0), and the rules are iterated 15 times before halting: g(0)15g(6)73g(16)277g(34)907g(64)2757g(114)7957g(196)22777g(334)64407g(564)180307g(946)504027g(1584)1403967g(2646)3906393g(4416)10861903g(7366)30196527g(12284)2457601Z>01001409510

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a
  3. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf