User:MrSolis/Playground: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
The 5-state busy beaver ([[BB(5)]]) winner is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. Discovered by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>, this machine proved that <math>\operatorname{BB}(5)\ge 47176870\phantom{}</math> and <math>\Sigma(5)\ge 4098</math> at the time.
The 5-state busy beaver ([[BB(5)]]) winner is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. Discovered by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>, this machine proved that <math>\operatorname{BB}(5)\ge 47176870\phantom{}</math> and <math>\Sigma(5)\ge 4098</math> at the time.
== Analysis ==
== Analysis ==
===Rules===
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,
<math display="block">\begin{array}{lll}
<math display="block">\begin{array}{lll}
Line 8: Line 9:
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty
\end{array}</math>
\end{array}</math>
===Proof===
WIP

Revision as of 19:23, 1 February 2025

5-state busy beaver winner (Remake)

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.

Analysis

Rules

Let . Then,

Proof

WIP

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html