User:MrSolis/Playground: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
== Analysis ==
== Analysis ==
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,
<math display="block">\begin{align}
<math display="block">\begin{array}{lll}
g(3x)& \xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x)&\phantom{}\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x+1)&\xrightarrow{5x^2+25x+27}&g(5x+9),\c\
g(3x+1)&\phantom{}\xrightarrow{5x^2+25x+27}&g(5x+9),\\
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.
g(3x+2)\phantom{}&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty
\end{array}</math>
\end{array}</math>
<math display="block">\begin{align}
  g(x) & \to \frac{5x+18}{3} && \text{if }x \equiv 0 \pmod{3} \\
  g(x) & \to \frac{5x+22}{3} && \text{if }x \equiv 1 \pmod{3} \\
  g(x) & \to \text{HALT}    && \text{if }x \equiv 2 \pmod{3}
\end{align}</math>

Revision as of 19:16, 1 February 2025

The 5-state busy beaver (BB(5)) winner is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch). Discovered by Heiner Marxen and Jürgen Buntrock in 1989[1], this machine proved that and at the time.

Analysis

Let . Then,

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html