1RB1RD1LC 2LB1RB1LC 1RZ1LA1LD 0RB2RA2RD: Difference between revisions
Hexational, not pentational |
→Analysis by Polygon: Some formatting changes to make the page look less chaotic |
||
Line 52: | Line 52: | ||
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf | 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf | ||
</pre> | </pre> | ||
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | Let <math>D(a, b, c)</math> = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | ||
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | Let <math>D_1(a, b, c)</math> = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | ||
Let <math>f_1(n) = 2^{n+4} \times 3 -5</math> | Let <math>f_1(n) = 2^{n+4} \times 3 -5</math> | ||
Line 61: | Line 61: | ||
Rule 21 becomes: | Rule 21 becomes: | ||
* <math>D(a, b, c) | * <math>D(a, b, c) \rightarrow D(a, b-1, 2^{b+4} \times 3 -5)</math> | ||
* <math>D_1(a, b, c) | * <math>D_1(a, b, c) \rightarrow D_1(a, b-1, 2^{b+4} \times 3 -5)</math> | ||
Rule 23 becomes: | Rule 23 becomes: | ||
* D(a, 0, c) | * <math>D(a, 0, c) \rightarrow D(a-3, 2c+11, 1)</math> | ||
* D_1(a, 0, c) | * <math>D_1(a, 0, c) \rightarrow D_1(a-3, 2c+11, 1)</math> | ||
Rule 24 becomes: | Rule 24 becomes: | ||
* D(0, 0, c) | * <math>D(0, 0, c) \rightarrow D(c+1, 3, 1)</math> | ||
Rule 25 becomes: | Rule 25 becomes: | ||
* D(2, 0, c) | * <math>D(2, 0, c) \rightarrow D(2c+8, 3, 1)</math> | ||
Rule 26 becomes: | Rule 26 becomes: | ||
* D_1(1, 0, c) | * <math>D_1(1, 0, c) \rightarrow D_1(2c+7, 3, 1)</math> | ||
Rule 27 becomes: | Rule 27 becomes: | ||
* D_1(0, 0, c) | * <math>D_1(0, 0, c) \rightarrow D(2c+5, 3, 1)</math> | ||
Rule 28 becomes: | Rule 28 becomes: | ||
* D(1, 0, c) | * <math>D(1, 0, c) \rightarrow \text {halt with score } 4c + 18</math> | ||
By repeating rule 21, a stronger rule can be constructed: | By repeating rule 21, a stronger rule can be constructed: | ||
* <math>D(a, b, c) | * <math>D(a, b, c) \rightarrow D(a, 0, f_1^{b}(c))</math> | ||
* <math>D_1(a, b, c) | * <math>D_1(a, b, c) \rightarrow D_1(a, 0, f_1^{b}(c))</math> | ||
If a is greater than or equal to 3: | If a is greater than or equal to 3: | ||
<math>D(a, 0, c) | <math>D(a, 0, c) \rightarrow D(a-3, 2c+11, 1) \rightarrow D(a-3, 0, f_1^{2c+11}(1))</math> | ||
=<math>D(a-3, 0, f_2(1,c))</math> | =<math>D(a-3, 0, f_2(1,c))</math> | ||
* <math>D(a, 0, c) | * <math>D(a, 0, c) \rightarrow D(a-3, 0, f_1^{2c+11}(1))</math> | ||
This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>: | This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>: | ||
* <math>D(3k+d, 0, c) | * <math>D(3k+d, 0, c) \rightarrow D(d, 0, f_2(k, c))</math> | ||
* <math>D_1(3k+d, 0, c) | * <math>D_1(3k+d, 0, c) \rightarrow D_1(d, 0, f_2(k, c))</math> | ||
The TM starts in configuration D(2, 2, 1). | The TM starts in configuration <math>D(2, 2, 1)</math>. | ||
D(2, 2, 1) | <math>D(2, 2, 1) \rightarrow D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(91))</math> | ||
<math>e_1 = f_1(91) = 2^{95} \times 3 -5</math> | <math>e_1 = f_1(91) = 2^{95} \times 3 -5</math> | ||
Line 118: | Line 116: | ||
<math>D(2, 0, e_1)</math> | <math>D(2, 0, e_1)</math> | ||
<math> \rightarrow D_1(2e_1+8, 3, 1) \rightarrow D_1(2e_1+8, 0, f_1^{2}(91))</math> | |||
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1 | <math>e_1</math> mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1 | ||
<math>D_1(2e_1+8, 0, f_1^{2}(91))</math> | <math>D_1(2e_1+8, 0, f_1^{2}(91))</math> | ||
<math> \rightarrow D_1(1,0,f_2(\frac{2e_1+7} 3, f_1^{2}(91)))</math> | |||
<math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math> | <math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math> | ||
Line 130: | Line 128: | ||
<math>D_1(1,0,e_3)</math> | <math>D_1(1,0,e_3)</math> | ||
<math>e_2 mod 3 = 1 | <math>e_2</math> mod 3 = 1 | ||
--> <math>D_1(2e_2+7, 3, 1) | --> <math>D_1(2e_2+7, 3, 1) \rightarrow D_1(2e_2+7, 0, f_1^{2}(91))</math> | ||
2e_3 + 7 | <math>2e_3 + 7</math> | ||
Modulus: 2 + 7 --> 9 mod 3 = 0 | Modulus: 2 + 7 --> 9 mod 3 = 0 | ||
<math> \rightarrow D_1(0, 0, f_2(\frac{2e_2+7} 3, f_1^{2}(91)))</math> | |||
<math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math> | <math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math> | ||
Line 145: | Line 143: | ||
<math>D_1(0, 0, e_3)</math> | <math>D_1(0, 0, e_3)</math> | ||
<math> \rightarrow D(2e_3+5, 3, 1) \rightarrow D(2e_3+5, 0, f_1^{2}(91))</math> | |||
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1 | <math>e_3</math> mod 3 = 1; 2*1 + 5 = 7 --> 7 mod 3 = 1 | ||
<math> \rightarrow D(1, 0, f_2(\frac{2e_3+4} 3, f_1^{2}(91)))</math> | |||
<math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math> | <math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math> |
Revision as of 11:56, 19 October 2025
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD
(bbch) is a hexational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over , possibly making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19))
Analysis by Polygon
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S A> 0^2 S --> S <A 1^2 S [+5 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] 8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] 11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] 14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] 15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] 16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps] 17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf 18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf 19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf 20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf 21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf 22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf 23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf 24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf 25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf 26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf 27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
Let = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let
Let , where
Rule 21 becomes:
Rule 23 becomes:
Rule 24 becomes:
Rule 25 becomes:
Rule 26 becomes:
Rule 27 becomes:
Rule 28 becomes:
By repeating rule 21, a stronger rule can be constructed:
If a is greater than or equal to 3: =
This rule can also be repeated, also note that and :
The TM starts in configuration .
f_1(n) = 2^(n+4)*3 - 5 Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1. Next, 3k+1 mod 3 = 1 So f_1(n) mod 3 = 1 Thus f_1^a(n) mod 3 = 1 f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n) Thus f_2(a,b) mod 3 = 1
mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
mod 3 = 1
-->
Modulus: 2 + 7 --> 9 mod 3 = 0
mod 3 = 1; 2*1 + 5 = 7 --> 7 mod 3 = 1
--> halts with score .
This can be bounded by: