Collatz-like: Difference between revisions
m :D |
m math format |
||
Line 1: | Line 1: | ||
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l} | A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l} | ||
c(2k) & = & k \\ | c(2k) & = & k \\ | ||
c(2k+1) & = & 3k+2 | c(2k+1) & = & 3k+2 | ||
\end{array}</math> | \end{array}</math> | ||
Line 19: | Line 19: | ||
M(3k) & \xrightarrow{5k^2+19k+15} & M(5k+6) \\ | M(3k) & \xrightarrow{5k^2+19k+15} & M(5k+6) \\ | ||
M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\ | M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\ | ||
M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty | M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty | ||
\end{array}</math> | \end{array}</math> | ||
Line 33: | Line 33: | ||
C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | ||
C(2n, & b+1) & \to & C(3n,b) \\ | C(2n, & b+1) & \to & C(3n,b) \\ | ||
C(2n+1, & b) & \to & C(3n+1,b+2) | C(2n+1, & b) & \to & C(3n+1,b+2) | ||
\end{array}</math> | \end{array}</math> | ||
Line 41: | Line 41: | ||
<math display="block">\begin{array}{l} | <math display="block">\begin{array}{l} | ||
H(2n) & = & 3n &\text{(even transition)} \\ | H(2n) & = & 3n &\text{(even transition)} \\ | ||
H(2n+1) & = & 3n+1&\text{(odd transition)} | H(2n+1) & = & 3n+1&\text{(odd transition)} | ||
\end{array}</math> | \end{array}</math> | ||
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below: | to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below: | ||
<math display="block">\begin{array}{l} | <math display="block">\begin{array}{l} | ||
\vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots | \vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 56: | Line 56: | ||
K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+3) & \to & K\Bigl(\frac{3^{k+3} + 1}{2}\Bigr) | K(4k+3) & \to & K\Bigl(\frac{3^{k+3} + 1}{2}\Bigr) | ||
\end{array}</math> | \end{array}</math> | ||
Revision as of 07:27, 8 October 2025
A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:
A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.
Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Examples
5-state busy beaver winner
Consider the 5-state busy beaver winner and the generalized configuration:
Pascal Michel showed that:
Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]
Hydra
Consider Hydra and the generalized configuration:
Daniel Yuan showed that:
Where is a halting configuration with non-zero symbols on the tape.
Starting from , this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below:
Exponential Collatz
Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE
(bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:Shawn Ligocki showed that:
Demonstrating Collatz-like behavior with exponential piecewise component functions.
Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]
References
- ↑ Pascal Michel's Analysis of the BB(5, 2) Champion
- ↑ Shawn Ligocki. BB(2, 5) is Hard (Hydra). 10 May 2024.
- ↑ Shawn Ligocki. BB(6, 2) > 10↑↑15. 21 Jun 2022.