|
|
Line 82: |
Line 82: |
| or, for a more precise lower bound: | | or, for a more precise lower bound: |
|
| |
|
| <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6</math> | | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> |
|
| |
|
| <math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> | | <math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> |
|
| |
|
| <math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> | | <math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> |
|
| |
|
| '''Upper bound''' | | '''Upper bound''' |
Line 108: |
Line 108: |
| Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | | Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> |
|
| |
|
| or, more precisely: | | or, for a more precise lower bound: |
|
| |
|
| Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> | | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> |
|
| |
|
| Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> | | Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> |
|
| |
|
| '''Upper bound''' | | '''Upper bound''' |
Line 132: |
Line 132: |
| More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math> | | More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math> |
|
| |
|
| Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> | | Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> |
Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD
(bbch)
Better lower bound for BB(4,3)
Definitions
Σ =
Lower bound on f^n(0)
Upper bound
as
Lower bound on g^k(n)
Upper bound
Lower bound on g^n1(n0)
; Note that
Upper bound
or, for a more precise upper bound:
Lower bound on f^g^n1(n0)(0)
and
or, for a more precise lower bound:
Upper bound
and
or, for a more precise upper bound:
and
Lower bound on Σ
Σ =
Σ >
or, for a more precise lower bound:
Σ =
Σ >
Upper bound
Σ =
Σ <
or, for a more precise upper bound:
Σ =
Σ <
General bound on Σ
< Σ <
More precisely:
< Σ <
Even more precisely:
< Σ <