User:Polygon/Collection of BB Champions: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(→‎Beeping Busy Beaver (BBB(n,m)): Added approximation of runtime)
(Organization)
Line 1: Line 1:
A collection of Busy Beaver [[Champions]] including Champions for BB-Adjacent [[:Category:Functions|functions]]. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).
A collection of Busy Beaver [[Champions]] including Champions for BB-Adjacent [[:Category:Functions|functions]]. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).
='''Original Busy Beaver Functions'''=
='''State-and-Symbol-limited Busy Beaver functions'''=
==Maximum Shifts Function ([[Busy Beaver Functions|S(n,m)]], also commonly called BB(n,m))==
=='''Original Busy Beaver Functions'''==
===Maximum Shifts Function ([[Busy Beaver Functions|S(n,m)]], also commonly called BB(n,m))===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 170: Line 171:
|}
|}


==Maximum Score Function ([[Busy Beaver Functions|Σ(n,m)]])==
===Maximum Score Function ([[Busy Beaver Functions|Σ(n,m)]])===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 279: Line 280:
|}
|}


='''Beeping Busy Beavers'''=
=='''Beeping Busy Beavers'''==
==Beeping Busy Beaver ([[BBB]](n,m))==
===Beeping Busy Beaver ([[BBB]](n,m))===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 343: Line 344:
|}
|}


==Beeping Booping Busy Beaver ([[Beeping Busy Beaver#Beeping Booping Busy Beavers|BBBB]](n,m))==
===Beeping Booping Busy Beaver ([[Beeping Busy Beaver#Beeping Booping Busy Beavers|BBBB]](n,m))===
There are currently no known/available Champions for this function.
There are currently no known/available Champions for this function.
='''Maximum Consecutive Ones Function ([[Num]](n,m))'''=
=='''Maximum Consecutive Ones Function ([[Num]](n,m))'''==
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 373: Line 374:
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}}
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}}
|}
|}
='''Maximum Space Function ([[Busy Beaver Functions#Other Busy Beaver functions|BB<sub>space</sub>]](n,m))'''=
=='''Maximum Space Function ([[Busy Beaver Functions#Other Busy Beaver functions|BB<sub>space</sub>]](n,m))'''==
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 398: Line 399:
|}
|}


='''Reversible Turing Machines'''=
=='''Reversible Turing Machines'''==
==Maximum Shifts Function ([[Reversible Turing Machine|BB<sub>rev</sub>]](n,m))==
===Maximum Shifts Function ([[Reversible Turing Machine|BB<sub>rev</sub>]](n,m))===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 435: Line 436:
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}}
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}}
|}
|}
==Maximum Score Function (Σ<sub>rev</sub>(n,m))==
===Maximum Score Function (Σ<sub>rev</sub>(n,m))===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 467: Line 468:
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|}
|}
='''Blanking Busy Beaver ([[Busy Beaver Functions#Other Busy Beaver functions|BLB(n,m)]])'''=
=='''Blanking Busy Beaver ([[Busy Beaver Functions#Other Busy Beaver functions|BLB(n,m)]])'''==
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 522: Line 523:
|}
|}


='''Lazy Beaver'''=
=='''Lazy Beaver'''==
==Shifts Function ([[Lazy Beaver|LB]](n,m))==
===Shifts Function ([[Lazy Beaver|LB]](n,m))===
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 574: Line 575:
|
|
|}
|}
='''Period-oriented Busy Beavers'''=
=='''Period-oriented Busy Beavers'''==
==Busy Preperiodic Beaver ([[BBS]](n,m))==
===Busy Preperiodic Beaver ([[BBS]](n,m))===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 616: Line 617:
|{{TM|1RB2LA0RA3LA_1LA1LB3RB1RA}}
|{{TM|1RB2LA0RA3LA_1LA1LB3RB1RA}}
|}
|}
==Busy Periodic Beaver ([[BBP]](n,m))==
===Busy Periodic Beaver ([[BBP]](n,m))===
'''2 Symbols:'''
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
Line 658: Line 659:
|}
|}
='''Instruction-Limited Busy Beaver'''=
='''Instruction-Limited Busy Beaver'''=
==Maximum amount of steps ([[BBi]](n))==
=='''Classical Busy Beaver Functions'''==
===Maximum amount of steps ([[BBi]](n))===
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 697: Line 699:
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|}
|}
==Maximum Score ([[Σi]](n))==
===Maximum Score ([[Σi]](n))===
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 737: Line 739:
|}
|}


='''Busy Beaver for Lambda Calculus'''=
='''Program-limited Busy Beaver'''=
==Regular Busy Beaver for Lambda Calculus ([[BBλ]](n))==
=='''Busy Beaver for Lambda Calculus'''==
===Regular Busy Beaver for Lambda Calculus ([[BBλ]](n))===
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of <math> 20 \geq n </math> BBλ(n) = n.
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of <math> 20 \geq n </math> BBλ(n) = n.
{| class="wikitable"
{| class="wikitable"
Line 866: Line 869:
|<code>Too large for this list</code>
|<code>Too large for this list</code>
|}
|}
==Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>(n)]])==
===Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>(n)]])===
Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>.
Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>.
{| class="wikitable"
{| class="wikitable"

Revision as of 17:19, 15 August 2025

A collection of Busy Beaver Champions including Champions for BB-Adjacent functions. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).

State-and-Symbol-limited Busy Beaver functions

Original Busy Beaver Functions

Maximum Shifts Function (S(n,m), also commonly called BB(n,m))

2 Symbols:

Runtime Champions
BB(1) 1RZ--- (bbch)
BB(2) 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch)
BB(3) 1RB1RZ_1LB0RC_1LC1LA (bbch)
BB(4) 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch)
BB(5) 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
BB(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 2\uparrow\uparrow 2\uparrow\uparrow 2\uparrow\uparrow 10} 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
BB(7) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 2 \uparrow^{11} 2 \uparrow^{11} 3} 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
BB(8)
BB(9) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_\omega(f_9(2))} 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH (bbch)
BB(10) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_\omega^2(25)} 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch)
BB(11) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_\omega^2(2 \uparrow\uparrow 12) > f_\omega^2(f_3(9))} 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch)
BB(12) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_\omega^4(2 \uparrow\uparrow\uparrow 4-3) > f_\omega^4(f_4(2))} 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch)
BB(14) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega + 1}(65\,536) > g_{64}} 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch)
BB(15) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega + 1}(f_\omega(10^{57}))} 0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN (bbch)
BB(16) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega + 1}^2(10^{10^{57}})}
BB(18)
BB(20) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega + 2}^2(21)}
BB(21) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega^2}^2(4 \uparrow\uparrow 341)}
BB(40) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega^\omega}(75\,500)}
BB(41) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\omega^\omega}^4(32)}
BB(51) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_{\varepsilon_0 + 1}(8)}

3 Symbols:

Runtime Champions
BB(1,3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 1RZ------ (bbch)
BB(2,3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 38} 1RB2LB1RZ_2LA2RB1LB (bbch)
BB(3,3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 119\,112\,334\,170\,342\,541 > 10^{17}} 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
BB(4,3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}-1)} 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

4 Symbols:

Runtime Champions
BB(1,4) 1RZ--------- (bbch)
BB(2,4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\,932\,964} 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
BB(3,4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > (2 \uparrow^{15} 5) + 14} [1] 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)

5 Symbols:

Runtime Champions
BB(1,5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 1RZ------------ (bbch)
BB(2,5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 10^{10^{10^{3\,314\,360}}}} 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
BB(3,5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > f_\omega(2 \uparrow^{15} 5) > f_\omega^2(15)} 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)

6 Symbols:

Runtime Champions
BB(1,6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 1RZ--------------- (bbch)
BB(2,6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 10 \uparrow\uparrow 10 \uparrow\uparrow 10^{10^{115}}} [2] 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)

Maximum Score Function (Σ(n,m))

2 Symbols:

Score Champions
Σ(1) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 1RZ--- (bbch)
Σ(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} 1RB1LB_1LA1RZ (bbch)
Σ(3) 1RB1RZ_0RC1RB_1LC1LA (bbch) 1RB1RC_1LC1RZ_1RA0LB (bbch) 1RB1LC_1LA1RB_1LB1RZ (bbch) 1RB1RA_1LC1RZ_1RA1LB (bbch) 1RB1LC_1RC1RZ_1LA0LB (bbch)
Σ(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 13} 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) 1RB0RC_1LA1RA_1RZ1RD_1LD0LB (bbch)
Σ(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4098} 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) 1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC (bbch)
Σ(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 2\uparrow\uparrow 2\uparrow\uparrow 2\uparrow\uparrow 10} 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
Σ(7) 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)

3 Symbols:

Score Champions
Σ(1,3) 1RZ------ (bbch)
Σ(2,3) 1RB2LB1RZ_2LA2RB1LB (bbch)
Σ(3,3) 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
Σ(4,3) 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

4 Symbols:

Score Champions
Σ(1,4) 1RZ--------- (bbch)
Σ(2,4) 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
Σ(3,4) [1] 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)

5 Symbols:

Score Champions
Σ(1,5) 1RZ------------ (bbch)
Σ(2,5) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)

6 Symbols:

Score Champions
Σ(1,6) 1RZ--------------- (bbch)
Σ(2,6) [2] 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)

Beeping Busy Beavers

Beeping Busy Beaver (BBB(n,m))

2 Symbols:

Steps taken Champions
BBB(1)
BBB(2) 1RB1LB_1LB1LA (bbch)
BBB(3) 1LB0RB_1RA0LC_1RC1RA (bbch)
BBB(4) 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
BBB(5) 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch)

3 Symbols:

Steps taken Champions
BBB(1,3)
BBB(2,3) [3]
BBB(3,3) 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch)

4 Symbols:

Steps taken Champions
BBB(1,4)
BBB(2,4) [4] 1RB2LA1RA1LB_0LB2RB3RB1LA (bbch)

Beeping Booping Busy Beaver (BBBB(n,m))

There are currently no known/available Champions for this function.

Maximum Consecutive Ones Function (Num(n,m))

2 Symbols:

Number of Ones Champions
num(1) 1RZ--- (bbch)
num(2) 1RB1LB_1LA1LZ (bbch)
num(3) 1RB1LC_1RC1LZ_1LA0LB (bbch)
num(4) 1RB0LA_1RC1LB_1LB1RD_1RZ0RA (bbch)
num(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 165} 1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB (bbch) 0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC (bbch)

Maximum Space Function (BBspace(n,m))

2 Symbols:

Cells visited Champions
BBspace(1,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
BBspace(2,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4}
BBspace(3,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7}
BBspace(4,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 16}

Reversible Turing Machines

Maximum Shifts Function (BBrev(n,m))

2 Symbols:

Steps Champions
BBrev(1)
BBrev(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6} 0RB1RZ_1LA1RB (bbch)
BBrev(3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 17} 0RB1RZ_0LC1RA_1RB1LC (bbch)
BBrev(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 48} 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
BBrev(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 388} 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
BBrev(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 537\,556} 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
BBrev(7) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle >10^{19}} 1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ (bbch)

Maximum Score Function (Σrev(n,m))

2 Symbols:

Score Champions
Σrev(1)
Σrev(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 2} 0RB1RZ_1LA1RB (bbch)
Σrev(3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 4} 0RB1RZ_0LC1RA_1RB1LC (bbch)
Σrev(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 6} 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
Σrev(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 16} 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
Σrev(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 1161} 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)

Blanking Busy Beaver (BLB(n,m))

2 Symbols:

Steps Champions
BLB(1)
BLB(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 6} [4]
BLB(3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 34} [4]
BLB(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 32\,779\,477} 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)

3 Symbols:

Steps Champions
BLB(1,3)
BLB(2,3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 77} [4]

4 Symbols:

Steps Champions
BLB(1,4)
BLB(2,4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 1\,367\,361\,263\,049} [4]

Lazy Beaver

Shifts Function (LB(n,m))

1 State 2 States 3 States 4 States 5 States 6 States
2 Symbols Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 22} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 72} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 427} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8407}
3 Symbols Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 23} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 351} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 189\,270}
4 Symbols Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 93} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 242\,789}
5 Symbols Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 956}
6 Symbols Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 33\,851}

Period-oriented Busy Beavers

Busy Preperiodic Beaver (BBS(n,m))

2 Symbols:

Preperiod Champions
BBS(1,2)
BBS(2,2)
BBS(3,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 101} 1RB1LB_0RC0LA_1LC0LA (bbch)
BBS(4,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 119\,120\,230\,102} 1RB1LC_0LA1RD_0RB0LC_1LA0RD (bbch)

3 Symbols: It seems that currently no information is available for this domain.

4 Symbols:

Preperiod Champions
BBS(1,4)
BBS(2,4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 293\,225\,660\,896} 1RB2LA0RA3LA_1LA1LB3RB1RA (bbch)

Busy Periodic Beaver (BBP(n,m))

2 Symbols:

Period Champions
BBP(1,2)
BBP(2,2)
BBP(3,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 92} 1RB0LA_0RC1LA_1LC0RB (bbch)
BBP(4,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 212\,081\,736} 1RB0LA_0RC1RD_1LD0RB_1LA1RB (bbch)

3 Symbols: It seems that currently no information is available for this domain.

4 Symbols:

Period Champions
BBP(1,4)
BBP(2,4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 33\,209\,131} 1RB0RA3LB1RB_2LA0LB1RA2RB (bbch)

Instruction-Limited Busy Beaver

Classical Busy Beaver Functions

Maximum amount of steps (BBi(n))

Steps Champions
BBi(1) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 0RH (bbch) 1RH--- (bbch)
BBi(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} 0RB---_1LA--- (bbch)
BBi(3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5} 1RB1LB_1LA--- (bbch)
BBi(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 16} 1RB---_0RC---_1LC0LA (bbch)
BBi(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 37} 1RB2LB---_2LA2RB1LB (bbch)
BBi(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 123} 1RB3LA1RA0LA_2LA------3RA (bbch)
BBi(7) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\,932\,963} 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
BBi(8) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle >6.889 \times 10^{1565}} 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)

Maximum Score (Σi(n))

Score Champions
Σi(1) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 1RH--- (bbch)
Σi(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} 1RB---_1LA--- (bbch)
Σi(3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} 1RB1LB_1LA--- (bbch)
Σi(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5} 1RB0LB---_1LA2RA--- (bbch)
Σi(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9} 1RB2LB---_2LA2RB1LB (bbch)
Σi(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 14} 1RB3LA1RA0LA_2LA------3RA (bbch)
Σi(7) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2050} 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
Σi(8) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle >1.355 \times 10^{783}} 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)

Program-limited Busy Beaver

Busy Beaver for Lambda Calculus

Regular Busy Beaver for Lambda Calculus (BBλ(n))

For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 20 \geq n } BBλ(n) = n.

BBλ(n) Champions
BBλ(21) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 22} \(\1 1) (1 (\2))
BBλ(22) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 24} \(\1 1) (1 (\\1))\(\1 1 1) (1 1)
BBλ(23) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 26} \(\1 1) (1 (\\2))
BBλ(24) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 30} \(\1 1 1) (1 (\1))
BBλ(25) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 42} \(\1 1) (\1 (2 1))
BBλ(26) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 52} (\1 1) (\\2 (1 2))
BBλ(27) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 44} \\(\1 1) (\1 (2 1))
BBλ(28) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 58} \(\1 1) (\1 (2 (\2))))
BBλ(29) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 223} \(\1 1) (\1 (1 (2 1)))
BBλ(30) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 160} (\1 1 1) (\\2 (1 2)) and (\1 (1 1)) (\\2 (1 2))
BBλ(31) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 267} (\1 1) (\\2 (2 (1 2)))
BBλ(32) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 298 } \(\1 1) (\1 (1 (2 (\2))))
BBλ(33) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1812} \(\1 1) (\1 (1 (1 (2 1))))
BBλ(34) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 327\,686} (\1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1) (\\2 (2 1))
BBλ(35) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 \times 3^{3^{3}} +6 > 3.8 \times 10^{13}} (\1 1 1) (\\2 (2 (2 1)))
BBλ(36) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 \times 2^{2^{2^{3}}} +6 > 5.7 \times 10^{77}} (\1 1) (\1 (1 (\\2 (2 1))))
BBλ(37) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BB \lambda(35) +2 =5 \times 3^{3^{3}} +8 > 3.8 \times 10^{13}} \(\1 1 1) (\\2 (2 (2 1)))
BBλ(38) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{10^{4}}} (\1 1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1 1) (\\2 (2 1))
BBλ(39) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 5 \times 3^{3^{3^{3}}} +6 > 10^{10^{12}}} (\1 1 1 1) (\\2 (2 (2 1)))
BBλ(40) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16} (\1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(41) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 5 \times 3^{3^{85}} +6 > 10^{10^{40}}} (\1 (\1 1) 1) (\\2 (2 (2 1)))
BBλ(42) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq BB \lambda(40) + 2 > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16} \(\1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(43) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8} (\1 1) (\1 (\1 (\\2 (2 1)) 2))
BBλ(44) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16} (\1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(45) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq BB \lambda(43) + 2 > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8} \(\1 1) (\1 (\1 (\\2 (2 1)) 2))
BBλ(46) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq BB \lambda(44) + 2 > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16} \(\1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(47)
BBλ(48) (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(49) (\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))
BBλ(1850) Too large for this list

Oracle Busy Beaver for Lambda Calculus (BBλ1(n))

Note that .

BBλ1(n) Champions
BBλ1(1)
BBλ1(2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} 1
BBλ1(3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}
BBλ1(4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} \1
BBλ1(5) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5} \2
BBλ1(6) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6} \\1
BBλ1(7) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7} \\2
BBλ1(8) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 26} 1 (\1)
BBλ1(9) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9} \\2
BBλ1(10) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 36} 1 (\\1)
BBλ1(11) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 41} 1 (\\2)
BBλ1(12) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 266} 1 (1 (\1))
BBλ1(13) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 51} 1 (\\2)
BBλ1(14) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78}} 1 (1 (\\1))
BBλ1(15) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{10^{40}}} 1 (1 (\\2))
BBλ1(16) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(266)} 1 (1 (1 (\1)))
BBλ1(17) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(51)} 1 (1 (\\\2))
BBλ1(18) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{4}(4) = f(f(266))} 1 (\1) 1 (\1)
BBλ1(19) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{3}(7) = f(f(41))} 1 (1 (1 (\\2)))
BBλ1(20) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{6}(4) = f^{4}(266)} 1 (\\1) 1 (\1)
BBλ1(21) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{7}(4) = f^{5}(266)} 1 (\\2) 1 (\1)
BBλ1(22) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{52}(4) = f^{50}(266)} 1 (1(\1)) 1(\1)
BBλ1(28) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq f^{BB \lambda(f^{3}(4))}(4)} 1 (\1) 1 (\1) 1 (\1)
BBλ1(29) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq f^{BB \lambda(f^{BB \lambda(f^{4}(4))+4}(4))+BB \lambda(f^{4}(4))+5}(4)} 1(\1)(\1 2 1)(\1)

Doodle Function (doodle(c,n))

doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2).

2 Symbols:

Runtime Champions
doodle(3,2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \geq 487}

Turmites

Terminating Turmites (TT(n,k), 1D Turmites)

Where n is the amount of states and k is the amount of symbols. There are currently no known/available Champions for this function.

2D Turmites (turNing machines)

There are currently no known/available Champions for this function.

References

  1. 1.0 1.1 S. Ligocki. "BB(3,4) > Ack(14)." https://www.sligocki.com/2024/05/22/bb-3-4-a14.html Blog post, 2024. Accessed 15 August 2025.
  2. 2.0 2.1 S. Ligocki, "BB(2,6) > 10↑↑10↑↑10↑↑3". Blog post, 2023. Accessed 15 August 2025.
  3. Nick Drozd. "BBB(3,3) > 10↑↑6". Accessed 15 August 2025.
  4. 4.0 4.1 4.2 4.3 4.4 Nick Drozd. "Latest Beeping Busy Beaver Results". Accessed 15 August 2025.