1RB0LD 1RC0RF 1LC1LA 0LE1RZ 1LF0RB 0RC0RE: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
DF376 (talk | contribs)
No edit summary
MrSolis (talk | contribs)
m >:(
 
(12 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{machine|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}
{{machine|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE}}{{Stub}}
{{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE}}
{{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}} is a former [[BB(6)]] champion. It was discovered by Pavel Kropitz on 30 May 2022. This TM runs for over 10 ↑↑ 15 steps. An improved bound for this TMs runtime was achieved by Shawn Ligocki, using an extended version of tetration: <math>10 \uparrow\uparrow 15.60463 < \mathrm{Score} < \mathrm{Runtime} < 10 \uparrow\uparrow 15.60466</math>.<ref>S. Ligocki, "[https://www.sligocki.com/2022/06/25/ext-up-notation.html Extending Up-arrow Notation]". Blog Post, 2022. Accessed 15 August 2025.</ref><ref>S. Ligocki, "[https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]". Blog post, 2022. Accessed 20 June 2024.</ref>


Current [[BB(6)]] Champion. Discovered by Pavel Kropitz on 30 May 2022. This TM runs for over 10↑↑15 steps. See analysis: [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15].
It simulates the following Collatz-like rules, starting at <math>C(5)</math>, on tape configurations <math>C(n):= 0^\infty\; 1\; 0^n\; 11\; 0^5\; \textrm{C}\textrm{>}\; 0^\infty</math>:
 
It simulates the following Collatz-like rules starting at C(5):


<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
   C(4k)  & \to & Halt(\frac{3^{k+3} - 11}{2}) \\
   C(4k)  & \to & \operatorname{Halt}\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   C(4k+1) & \to & C(\frac{3^{k+3} - 11}{2}) \\
   C(4k+1) & \to & C\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   C(4k+2) & \to & C(\frac{3^{k+3} - 11}{2}) \\
   C(4k+2) & \to & C\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   C(4k+3) & \to & C(\frac{3^{k+3} + 1}{2}) \\
   C(4k+3) & \to & C\Bigl(\frac{3^{k+3} + 1}{2}\Bigr) \\
\end{array}</math>
\end{array}</math>
[[Category:Stub]]
 
==References==
<references />
 
[[Category:BB(6)]]

Latest revision as of 22:18, 7 October 2025

1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch) is a former BB(6) champion. It was discovered by Pavel Kropitz on 30 May 2022. This TM runs for over 10 ↑↑ 15 steps. An improved bound for this TMs runtime was achieved by Shawn Ligocki, using an extended version of tetration: 1015.60463<Score<Runtime<1015.60466.[1][2]

It simulates the following Collatz-like rules, starting at C(5), on tape configurations C(n):=010n1105C>0:

C(4k)Halt(3k+3112)C(4k+1)C(3k+3112)C(4k+2)C(3k+3112)C(4k+3)C(3k+3+12)

References

  1. S. Ligocki, "Extending Up-arrow Notation". Blog Post, 2022. Accessed 15 August 2025.
  2. S. Ligocki, "BB(6, 2) > 10↑↑15". Blog post, 2022. Accessed 20 June 2024.