User:Polygon/Collection of BB Champions: Difference between revisions
→Fractran: Added link to page |
→Instruction-Limited Blanking Busy Beaver (BLBi(n)): Added BLBi(9) |
||
| (47 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
A collection of Busy Beaver [[Champions]] including Champions for BB-Adjacent [[:Category:Functions|functions]]. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2). | A collection of Busy Beaver [[Champions]] including Champions for BB-Adjacent [[:Category:Functions|functions]]. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2). | ||
='''State-and-Symbol-Limited Busy Beaver functions'''= | |||
== | Note: highest ref name in use: 4 | ||
===Maximum Shifts Function ([[Busy Beaver Functions|S(n,m)]], also commonly called BB(n,m))=== | = '''State-and-Symbol-Limited Busy Beaver functions''' = | ||
Busy Beaver functions where the programs size is limited by the amount of states and symbols. | |||
== Original Busy Beaver Functions == | |||
=== Maximum Shifts Function ([[Busy Beaver Functions|S(n,m)]], also commonly called BB(n,m)) === | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 9: | Line 12: | ||
!Champions | !Champions | ||
|- | |- | ||
|BB(1) | |[[BB(1)]] | ||
|1 | |1 | ||
|{{TM|1RZ---|halt}} | |{{TM|1RZ---|halt}} | ||
| Line 129: | Line 132: | ||
|{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}} | |{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}} | ||
|- | |- | ||
|BB(3,4) | |[[BB(3,4)]] | ||
|<math>> (2 \uparrow^{15} 5) + 14</math><ref name=":0">S. Ligocki. "BB(3,4) > Ack(14)." https://www.sligocki.com/2024/05/22/bb-3-4-a14.html Blog post, 2024. Accessed 15 August 2025.</ref> | |<math>> (2 \uparrow^{15} 5) + 14</math><ref name=":0">S. Ligocki. "BB(3,4) > Ack(14)." https://www.sligocki.com/2024/05/22/bb-3-4-a14.html Blog post, 2024. Accessed 15 August 2025.</ref> | ||
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}} | |{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}} | ||
| Line 147: | Line 150: | ||
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}} | |{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}} | ||
|- | |- | ||
|BB(3,5) | |[[BB(3,5)]] | ||
|<math>> f_\omega(2 \uparrow^{15} 5) > f_\omega^2(15)</math> | |<math>> f_\omega(2 \uparrow^{15} 5) > f_\omega^2(15)</math> | ||
|{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}} | |{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}} | ||
| Line 161: | Line 164: | ||
|{{TM|1RZ---------------|halt}} | |{{TM|1RZ---------------|halt}} | ||
|- | |- | ||
|BB(2,6) | |[[BB(2,6)]] | ||
|<math>> 10 \uparrow\uparrow 10 \uparrow\uparrow 10^{10^{115}}</math><ref name=":1">S. Ligocki, "[https://www.sligocki.com/2023/05/20/bb-2-6-p3.html BB(2,6) > 10↑↑10↑↑10↑↑3]". Blog post, 2023. Accessed 15 August 2025.</ref> | |<math>> 10 \uparrow\uparrow 10 \uparrow\uparrow 10^{10^{115}}</math><ref name=":1">S. Ligocki, "[https://www.sligocki.com/2023/05/20/bb-2-6-p3.html BB(2,6) > 10↑↑10↑↑10↑↑3]". Blog post, 2023. Accessed 15 August 2025.</ref> | ||
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}} | |{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}} | ||
|} | |} | ||
===Maximum Score Function ([[Busy Beaver Functions|Σ(n,m)]])=== | |||
=== Maximum Score Function ([[Busy Beaver Functions|Σ(n,m)]]) === | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 269: | Line 273: | ||
|} | |} | ||
== | == Beeping Busy Beavers == | ||
===Beeping Busy Beaver ([[BBB]](n,m))=== | === Beeping Busy Beaver ([[BBB]](n,m)) === | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 329: | Line 333: | ||
|{{TM|1RB2LA1RA1LB_0LB2RB3RB1LA}} | |{{TM|1RB2LA1RA1LB_0LB2RB3RB1LA}} | ||
|} | |} | ||
===Beeping Booping Busy Beaver ([[Beeping Busy Beaver#Beeping Booping Busy Beavers|BBBB]](n,m))=== | === Beeping Booping Busy Beaver ([[Beeping Busy Beaver#Beeping Booping Busy Beavers|BBBB]](n,m)) === | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 345: | Line 349: | ||
|} | |} | ||
== | == Maximum Consecutive Ones Function ([[Num]](n,m)) == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
! | !Domain | ||
!Number of Ones | !Number of Ones | ||
!Champions | !Champions | ||
| Line 371: | Line 375: | ||
|165 | |165 | ||
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}} | |{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}} | ||
|- | |||
|num(2,3) | |||
|6 | |||
|{{TM|1RB1LA1LB_0LA2RA1RZ|halt}} | |||
|- | |||
|num(3,3) | |||
|≥ 12 | |||
|{{TM|1RB1RA1RZ_1LC1LC2LA_2RA1LB1LA|halt}} | |||
|- | |||
|num(4,3) | |||
|<math>> 10 {\uparrow}^{4} 4</math> | |||
|{{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}} | |||
|} | |} | ||
== | |||
== Maximum Space Function ([[Maximum Space Function|BB<sub>space</sub>]](n,m)) == | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 418: | Line 435: | ||
|} | |} | ||
== | == Size of the runtime spectrum (R(n,m)) == | ||
There currently doesn't seem to be any available information about values of this function. | There currently doesn't seem to be any available information about values of this function. | ||
== | == Reversible Turing Machines == | ||
===Maximum Shifts Function ([[Reversible Turing Machine|BB<sub>rev</sub>]](n,m))=== | === Maximum Shifts Function ([[Reversible Turing Machine|BB<sub>rev</sub>]](n,m)) === | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 457: | Line 474: | ||
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}} | |{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}} | ||
|} | |} | ||
===Maximum Score Function (Σ<sub>rev</sub>(n,m))=== | |||
=== Maximum Score Function (Σ<sub>rev</sub>(n,m)) === | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 488: | Line 506: | ||
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}} | |{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}} | ||
|} | |} | ||
== | |||
== Blanking Busy Beaver ([[Blanking Busy Beaver|BLB(n,m)]]) == | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 500: | Line 519: | ||
|- | |- | ||
|BLB(2) | |BLB(2) | ||
| | |8<ref name=":3">Nick Drozd. "[https://nickdrozd.github.io/2021/02/14/blanking-beavers.html Blanking Beavers]". Accessed 15 August 2025.</ref> | ||
|{{TM|1RB0RA_1LB1LA}} | |{{TM|1RB0RA_1LB1LA}} | ||
|- | |- | ||
| Line 510: | Line 529: | ||
|≥ 32,779,477 | |≥ 32,779,477 | ||
|{{TM|1RB1LD_1RC1RB_1LC1LA_0RC0RD}} | |{{TM|1RB1LD_1RC1RB_1LC1LA_0RC0RD}} | ||
|- | |||
|BLB(5) | |||
|≥ 32,810,047<ref>Comment #71 "https://scottaaronson.blog/?p=5661". Accessed 26 September 2025.</ref> | |||
|{{TM|1RB1LC_1RD0LE_0RD0RC_1LD1LA_1RB1RE}} | |||
|- | |||
|BLB(6) | |||
|≥ 65,538,549<ref>Comment #62 "https://scottaaronson.blog/?p=5661". Accessed 26 September 2025.</ref> | |||
|{{TM|1RB1LE_1RD1RB_0RD0RE_1LD1LA_0RF1RF_0LC1LC}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 524: | Line 551: | ||
|≥ 77<ref name=":4" /> | |≥ 77<ref name=":4" /> | ||
|{{TM|1RB2LA0RB_1LA0LB1RA}} | |{{TM|1RB2LA0RB_1LA0LB1RA}} | ||
|- | |||
|BLB(3,3) | |||
|> 10<sup>42,745</sup> | |||
|{{TM|1RB2RB1LA_2LC0LB2LB_2RC2RA0LC}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 540: | Line 571: | ||
|} | |} | ||
== | == Lazy Beaver == | ||
===Shifts Function ([[Lazy Beaver|LB]](n,m))=== | === Shifts Function ([[Lazy Beaver|LB]](n,m)) === | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 593: | Line 624: | ||
|} | |} | ||
== | == Period-oriented Busy Beavers == | ||
===Busy Preperiodic Beaver ([[BBS]](n,m))=== | === Busy Preperiodic Beaver ([[BBS]](n,m)) === | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 616: | Line 647: | ||
|≥ 119,120,230,102 | |≥ 119,120,230,102 | ||
|{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}} | |{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}} | ||
|- | |||
|BBS(5,2) | |||
|> 10<sup>14,006</sup> | |||
|{{TM|1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 626: | Line 661: | ||
|0 | |0 | ||
|{{TM|1RA------}} | |{{TM|1RA------}} | ||
|- | |||
|BBS(2,3) | |||
|≥ 165<ref>Nick Drozd. [https://nickdrozd.github.io/2021/02/14/blanking-beavers.html Blanking Beavers]</ref> | |||
|{{TM|1RB0LA---_1LB2LA0RB}} | |||
|- | |||
|BBS(3,3) | |||
|> 10 ↑↑ 6 | |||
|{{TM|1RB0LB2LA_1LA0RC0LB_2RC2RB0LC}} | |||
|- | |||
|BBS(4,3) | |||
|> <math>10 \uparrow^{4} 4</math> | |||
|{{TM|1RB1RD1LC_2LB1RB1LC_1LB1LA1LD_0RB2RA2RD}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 638: | Line 685: | ||
|- | |- | ||
|BBS(2,4) | |BBS(2,4) | ||
|≥ | |≥ 205,770,076,433,044,242,247,860 | ||
|{{TM| | |{{TM|1RB2LA1RA1LB_0LB2RB3RB1LA}} | ||
|} | |} | ||
===Busy Periodic Beaver ([[BBP]](n,m))=== | |||
=== Busy Periodic Beaver ([[BBP]](n,m)) === | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 673: | Line 721: | ||
|1 | |1 | ||
|{{TM|1RA------}} | |{{TM|1RA------}} | ||
|- | |||
|BBP(2,3) | |||
| | |||
| | |||
|- | |||
|BBP(3,3) | |||
|≥ 1,195 | |||
|{{TM|1RB2RC1LC_0RC0RB1LA_2LA2RC1LB}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 689: | Line 745: | ||
|} | |} | ||
='''Instruction-Limited Busy Beaver'''= | = '''Instruction-Limited Busy Beaver''' = | ||
== | == Instruction-Limited Classical Busy Beaver Functions == | ||
===Instruction-Limited Maximum Shifts Function ([[BBi]](n))=== | === Instruction-Limited Maximum Shifts Function ([[BBi]](n)) === | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 734: | Line 790: | ||
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA---|halt}} | |{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA---|halt}} | ||
|} | |} | ||
===Instruction-Limited Maximum Score Function ([[Σi]](n))=== | |||
=== Instruction-Limited Maximum Score Function ([[Σi]](n)) === | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 778: | Line 835: | ||
|} | |} | ||
== | == Instruction-Limited Blanking Busy Beaver ([[Instruction-Limited Busy Beaver#Instruction-Limited Busy Beaver Variants|BLBi(n)]]) == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 795: | Line 852: | ||
|BLBi(3) | |BLBi(3) | ||
|4 | |4 | ||
| | |{{TM|1RB0RA_1LA---}} | ||
|- | |- | ||
|BLBi(4) | |BLBi(4) | ||
|12 | |12 | ||
| | |{{TM|1RB---_1RC---_1LC0RC}} | ||
|- | |- | ||
|BLBi(5) | |BLBi(5) | ||
|30 | |30 | ||
| | |{{TM|1RB------_1RC------_2LC2RC0RC}} | ||
|- | |- | ||
|BLBi(6) | |BLBi(6) | ||
| Line 811: | Line 868: | ||
|BLBi(7) | |BLBi(7) | ||
|808 | |808 | ||
| | ||{{TM|1RB------_1RC------_0RD2LC---_1LD2RD0RC}} | ||
|- | |- | ||
|BLBi(8) | |BLBi(8) | ||
|≥ 1,367,361,263,049 | |≥ 1,367,361,263,049 | ||
|{{TM|1RB2RA1RA2RB_2LB3LA0RB0RA}} | |{{TM|1RB2RA1RA2RB_2LB3LA0RB0RA}} | ||
|- | |||
|BLBi(9) | |||
|> 10<sup>42,745</sup> | |||
|{{TM|1RB2RB1LA_2LC0LB2LB_2RC2RA0LC}} | |||
|} | |} | ||
== | == Instruction-Limited Greedy Busy Beaver ([[Instruction-Limited Busy Beaver#Instruction-Limited Busy Beaver Variants|gBBi(n)]]) == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 881: | Line 942: | ||
|{{TM|0RB6RB1LB---3LA1RB7RB2LB_1LA2RB3LA4RB5RB1LB5LA---|halt}} | |{{TM|0RB6RB1LB---3LA1RB7RB2LB_1LA2RB3LA4RB5RB1LB5LA---|halt}} | ||
|} | |} | ||
='''Program-Limited Busy Beaver'''= | |||
== | = '''Program-Limited Busy Beaver''' = | ||
===Regular Busy Beaver for Lambda Calculus ([[BBλ]](n))=== | == Busy Beaver for Lambda Calculus == | ||
=== Regular Busy Beaver for Lambda Calculus ([[BBλ]](n)) === | |||
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of <math> 20 \geq n </math> BBλ(n) = n. | For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of <math> 20 \geq n </math> BBλ(n) = n. | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 1,006: | Line 1,068: | ||
|<math>> f_{\omega+1}(\frac{2 \uparrow\uparrow 6}{2}) > \text{Graham's Number}</math> | |<math>> f_{\omega+1}(\frac{2 \uparrow\uparrow 6}{2}) > \text{Graham's Number}</math> | ||
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code> | |<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code> | ||
|- | |||
|BBλ(63) | |||
|<math>> f_{\omega^3}\left(2\right)</math> | |||
|<code>(\1 1 (\\\1 3 2 1) 1 1 1) (\\2 (2 1))</code> | |||
|- | |||
|BBλ(91) | |||
|<math>> f_{\varepsilon_0 + 1}\left(3\right)</math> | |||
|<code>(\1 1 (\1 1) (\\1 2 1) (\1 (\2 1 2))) (\\\2 3 (\3 1 2))</code> | |||
|- | |- | ||
|BBλ(1850) | |BBλ(1850) | ||
| Line 1,011: | Line 1,081: | ||
|<code>Too large for this list</code> | |<code>Too large for this list</code> | ||
|} | |} | ||
===Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>(n)]])=== | |||
=== Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>(n)]]) === | |||
Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>. | Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>. | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 1,116: | Line 1,187: | ||
|} | |} | ||
= | === Busy Beaver for De Bruijn Lambda Calculus === | ||
{| class="wikitable" | |||
!n | |||
!Value | |||
!Champion | |||
|- | |||
|7 | |||
|≥ 7 | |||
|<code>\1 1 1 1 1 1</code> | |||
|- | |||
|8 | |||
|≥ 16 | |||
|<code>(\1 1) (\\2 (1 2))</code> | |||
|- | |||
|9 | |||
|≥ 68 | |||
|<code>(\1 1) (\\2 (2 (1 2)))</code> | |||
|- | |||
|10 | |||
|<math>> 7.625 \times 10^{12}</math> | |||
|<code>(\1 1 1) (\\2 (2 (2 1)))</code> | |||
|- | |||
|11 | |||
|<math>> 10^{7.625 \times 10^{12}}</math> | |||
|<code>(\1 1 1 1) (\\2 (2 (2 1)))</code> | |||
|- | |||
|12 | |||
|<math>> 10 {\uparrow}^{3} 16</math> | |||
|<code>(\1 1 1) (\1 (\\2 (2 1)) 1)</code> | |||
|- | |||
|13 | |||
|<math>> 10 {\uparrow}^{3} 10 {\uparrow}^{3} 10 {\uparrow}^{2} 6</math> | |||
|<code>(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code> | |||
|- | |||
|14 | |||
|<math>> 10 {\uparrow}^{3} 10 {\uparrow}^{3} 10 {\uparrow}^{3} 16</math> | |||
|<code>(\1 1 1 1 1) (\1 (\\2 (2 1)) 1)</code> | |||
|- | |||
|15 | |||
|<math>> f_{\omega+1}(10^{10^{19,727}})</math> | |||
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code> | |||
|- | |||
|18 | |||
|<math>f_{\omega^3}(2)</math> | |||
|<code>(\1 1 (\\\1 3 2 1) 1 1 1) (\\2 (2 1))</code> | |||
|- | |||
|26 | |||
|<math>f_{\epsilon_0+1}(3)</math> | |||
|<code>(\1 1 (\1 1) (\\1 2 1) (\1 (\2 1 2))) (\\\2 3 (\3 1 2))</code> | |||
|} | |||
== [[Busy Beaver for SKI calculus]] == | |||
=== Busy Beaver for SKI calculus === | |||
{| class="wikitable" | |||
! n !! Value !! Champion | |||
|- | |||
| 1 || 1 || S | |||
|- | |||
| 2 || 2 || SS | |||
|- | |||
| 3 || 3 || SSS | |||
|- | |||
| 4 || 4 || SSSS | |||
|- | |||
| 5 || 6 || SSS(SS) | |||
|- | |||
| 6 || 17 || SSS(SI)S | |||
|- | |||
|7 | |||
|≥ 18 | |||
|S(SSS(SI)S) | |||
|- | |||
|8 | |||
|≥ 19 | |||
|SS(SSS(SI)S) | |||
|- | |||
|9 | |||
|≥ 519 | |||
|SSI((S(SS)S)S)K | |||
|- | |||
|10 | |||
|≥ 1041 | |||
|SSI((S(SS)S)S)KS | |||
|} | |||
=== Busy Beaver for SK calculus === | |||
{| class="wikitable" | |||
! n !! Value !! Champion | |||
|- | |||
| 1 || = 1 || S | |||
|- | |||
| 2 || = 2 || SS | |||
|- | |||
| 3 || = 3 || SSS | |||
|- | |||
| 4 || = 4 || <code>SSSS</code> | |||
|- | |||
| 5 || = 6 || <code>SSS(SS)</code> | |||
|- | |||
| 6 || ≥ 8 || <code>SSS(SSS)</code> | |||
|- | |||
|7 | |||
|≥ 10 | |||
|<code>SSS(SSSS)</code> | |||
|- | |||
|8 | |||
|≥ 23 | |||
|<code>SSS(S(SKS))S</code> | |||
|} | |||
== Fractran ([[Fractran|BBf]](n)) == | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 1,253: | Line 1,434: | ||
& +2 & -1 & & | & +2 & -1 & & | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
|- | |||
|21 | |||
|≥ 31,957,632 | |||
|<code>[7/15, 4/3, 27/14, 5/2, 9/5]</code> | |||
|<math>\begin{bmatrix} | |||
0 & -1 & -1 & 1 \\ | |||
2 & -1 & 0 & 0 \\ | |||
-1 & 3 & 0 & -1 \\ | |||
-1 & 0 & 1 & 0 \\ | |||
0 & 2 & -1 & 0 | |||
\end{bmatrix}</math> | |||
|- | |||
|22 | |||
|<math>> 1.146 \times 10^{62}</math> | |||
|<code>[1/12, 9/10, 14/3, 11/2, 5/7, 3/11]</code> | |||
|<math>\begin{bmatrix} | |||
-2 & -1 & 0 & 0 & 0 \\ | |||
-1 & 2 & -1 & 0 & 0 \\ | |||
1 & -1 & 0 & 1 & 0 \\ | |||
-1 & 0 & 0 & 0 & 1 \\ | |||
0 & 0 & 1 & -1 & 0 \\ | |||
0 & 1 & 0 & 0 & -1 | |||
\end{bmatrix}</math> | |||
|} | |||
== Cyclic Tag ([[Cyclic Tag|CTBB(n)]]) == | |||
{| class="wikitable" | |||
|+ | |||
! | |||
!Runtime | |||
!Champions | |||
|- | |||
|CTBB(2) | |||
|5<ref>https://discord.com/channels/960643023006490684/960643023530762341/1440163057463726233</ref> | |||
| | |||
|- | |||
|CTBB(3) | |||
|<u>></u> 38<ref>https://discord.com/channels/960643023006490684/1438694294042181742/1440193579006951517</ref> | |||
| | |||
|- | |||
|CTBB(4) | |||
|≥ 672<ref>https://discord.com/channels/960643023006490684/1438694294042181742/1443246244142252043</ref> | |||
| | |||
|- | |||
|CTBB(5) | |||
|≥ 2^2^2^2^182<ref>https://discord.com/channels/960643023006490684/1438694294042181742/1443298934217900063</ref> | |||
| | |||
|- | |||
|CTBB(6) | |||
|<u>></u> 2↑↑↑131<ref>https://discord.com/channels/960643023006490684/1438694294042181742/1442847677883875479</ref> | |||
| | |||
|- | |||
|CTBB(7) | |||
|<u>></u> 4↑↑↑↑(4↑↑↑3)<ref>https://discord.com/channels/960643023006490684/1438694294042181742/1442950825545564281</ref> <ref>https://discord.com/channels/960643023006490684/1438694294042181742/1442819117735346217</ref> | |||
| | |||
|} | |} | ||
='''Doodle Function ([[Doodle function|doodle(c,n)]])'''= | == Minsky Machines ([[Register machine|MBB(n)]]) == | ||
{| class="wikitable" | |||
!Domain | |||
!Halting Time | |||
!Champion | |||
|- | |||
|MBB(1) | |||
|1 | |||
|<code>0+Z</code> | |||
|- | |||
|MBB(2) | |||
|3 | |||
|<code>0+B_0-B*</code> | |||
|- | |||
|MBB(3) | |||
|5 | |||
|<code>0+B_0+C_0-C*</code> | |||
|- | |||
|MBB(4) | |||
|10 | |||
|<code>0+B_1+C_0-BD_1-C*</code> | |||
|- | |||
|MBB(5) | |||
|24 | |||
|<code>0-DB_0+C_1-ED_1+A_1-B*</code> | |||
|- | |||
|MBB(6) | |||
|≥ 49 | |||
|<code>0+B_1-FC_1+D_0-CE_0+A_1-A*</code> | |||
|} | |||
= '''Turmites''' = | |||
== Terminating Turmites ([[TT]](n,k), 1D Turmites) == | |||
Where n is the amount of states and k is the amount of symbols. | |||
{| class="wikitable" | |||
!Domain | |||
!Runtime | |||
!Champions | |||
|- | |||
|TT(2) | |||
|≥ 13 | |||
|<code>1TB---_1PA0PB</code> | |||
|- | |||
|TT(3) | |||
|≥ 82 | |||
|<code>1PB0PA_1TA0PC_1PA---</code> | |||
|- | |||
|TT(4) | |||
|≥ 48,186 | |||
|<code>1TB1PA_1PC0PA_1TA0PD_---1TA</code> | |||
|- | |||
|TT(2,3) | |||
|≥ 223 | |||
|<code>1TB0PA2PA_2PA---1PA</code> | |||
|- | |||
|TT(3,3) | |||
|≥ 45,153 | |||
|<code>1PB1PA1TA_2TB2PB2PC_---2PA1TC</code> | |||
|- | |||
|TT(2,4) | |||
|> 3.467*10<sup>15</sup> | |||
|<code>1TA2PB3TB---_3TA1PB1TA1PA</code> | |||
|} | |||
== 2D Turmites ([[Terminating Turmite|turNing machines]]) == | |||
There are currently no known/available Champions for this function. | |||
= '''Doodle Function ([[Doodle function|doodle(c,n)]])''' = | |||
doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2). | doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2). | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 1,267: | Line 1,571: | ||
| | | | ||
|} | |} | ||
='''Bug Function'''= | = '''Bug Function''' = | ||
Bug(2,2) = 2 | Bug(2,2) = 2 | ||
<pre> | <pre> | ||
| Line 1,351: | Line 1,650: | ||
</pre> | </pre> | ||
=References= | = '''References''' = | ||
Latest revision as of 22:37, 9 January 2026
A collection of Busy Beaver Champions including Champions for BB-Adjacent functions. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).
Note: highest ref name in use: 4
State-and-Symbol-Limited Busy Beaver functions
Busy Beaver functions where the programs size is limited by the amount of states and symbols.
Original Busy Beaver Functions
Maximum Shifts Function (S(n,m), also commonly called BB(n,m))
| 2 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1) | 1 | 1RZ--- (bbch)
|
| BB(2) | 6 | 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch)
|
| BB(3) | 21 | 1RB1RZ_1LB0RC_1LC1LA (bbch)
|
| BB(4) | 107 | 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch)
|
| BB(5) | 47,176,870 | 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
|
| BB(6) | > 10 ↑↑ 10 ↑↑ 10 ↑↑ 8.10237 | 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
|
| BB(7) | 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
| |
| BB(8) | ||
| BB(9) | 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH (bbch)
| |
| BB(10) | 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch)
| |
| BB(11) | 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch)
| |
| BB(12) | 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch)
| |
| BB(14) | 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch)
| |
| BB(15) | 0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN (bbch)
| |
| BB(16) | ||
| BB(18) | ||
| BB(20) | ||
| BB(21) | ||
| BB(40) | ||
| BB(41) | ||
| BB(51) |
| 3 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,3) | 1 | 1RZ------ (bbch)
|
| BB(2,3) | 38 | 1RB2LB1RZ_2LA2RB1LB (bbch)
|
| BB(3,3) | 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
| |
| BB(4,3) | 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)
|
| 4 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,4) | 1 | 1RZ--------- (bbch)
|
| BB(2,4) | 3,932,964 | 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
|
| BB(3,4) | [1] | 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)
|
| 5 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,5) | 1 | 1RZ------------ (bbch)
|
| BB(2,5) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
| |
| BB(3,5) | 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)
|
| 6 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,6) | 1 | 1RZ--------------- (bbch)
|
| BB(2,6) | [2] | 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
Maximum Score Function (Σ(n,m))
| 2 Symbols: | Score | Champions |
|---|---|---|
| Σ(1) | 1 | 1RZ--- (bbch)
|
| Σ(2) | 4 | 1RB1LB_1LA1RZ (bbch)
|
| Σ(3) | 6 | 1RB1RZ_0RC1RB_1LC1LA (bbch) 1RB1RC_1LC1RZ_1RA0LB (bbch) 1RB1LC_1LA1RB_1LB1RZ (bbch) 1RB1RA_1LC1RZ_1RA1LB (bbch) 1RB1LC_1RC1RZ_1LA0LB (bbch)
|
| Σ(4) | 13 | 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) 1RB0RC_1LA1RA_1RZ1RD_1LD0LB (bbch)
|
| Σ(5) | 4098 | 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) 1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC (bbch)
|
| Σ(6) | > 10 ↑↑ 10 ↑↑ 10 ↑↑ 8.10237 | 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
|
| Σ(7) | 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
|
| 3 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,3) | 1 | 1RZ------ (bbch)
|
| Σ(2,3) | 9 | 1RB2LB1RZ_2LA2RB1LB (bbch)
|
| Σ(3,3) | ≥ 374,676,383 | 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
|
| Σ(4,3) | 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)
|
| 4 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,4) | 1 | 1RZ--------- (bbch)
|
| Σ(2,4) | 2050 | 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
|
| Σ(3,4) | [1] | 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)
|
| 5 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,5) | 1 | 1RZ------------ (bbch)
|
| Σ(2,5) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
|
| 6 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,6) | 1 | 1RZ--------------- (bbch)
|
| Σ(2,6) | [2] | 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
Beeping Busy Beavers
Beeping Busy Beaver (BBB(n,m))
| 2 Symbols: | Steps taken | Champions |
|---|---|---|
| BBB(1) | 1 | |
| BBB(2) | 6 | 1RB1LB_1LB1LA (bbch)
|
| BBB(3) | 55 | 1RB0LB_1LA0RC_1LC1LA (bbch)
|
| BBB(4) | ≥ 32,779,478 | 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
|
| BBB(5) | 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch)
|
| 3 Symbols: | Steps taken | Champions |
|---|---|---|
| BBB(1,3) | ||
| BBB(2,3) | 59[3] | 1RB2LB1LA_2LB2RA0RA (bbch)
|
| BBB(3,3) | ≥ 10 ↑↑ 6 | 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch)
|
| 4 Symbols: | Steps taken | Champions |
|---|---|---|
| BBB(1,4) | ||
| BBB(2,4) | [4] | 1RB2LA1RA1LB_0LB2RB3RB1LA (bbch)
|
Beeping Booping Busy Beaver (BBBB(n,m))
| 2 Symbols: | Steps taken | Champions |
|---|---|---|
| BBBB(1) | 2 | |
| BBBB(2) | 17 |
Maximum Consecutive Ones Function (Num(n,m))
| Domain | Number of Ones | Champions |
|---|---|---|
| num(1) | 1 | 1RZ--- (bbch)
|
| num(2) | 4 | 1RB1LB_1LA1LZ (bbch)
|
| num(3) | 6 | 1RB1LC_1RC1LZ_1LA0LB (bbch)
|
| num(4) | 12 | 1RB0LA_1RC1LB_1LB1RD_1RZ0RA (bbch)
|
| num(5) | 165 | 1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB (bbch) 0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC (bbch)
|
| num(2,3) | 6 | 1RB1LA1LB_0LA2RA1RZ (bbch)
|
| num(3,3) | ≥ 12 | 1RB1RA1RZ_1LC1LC2LA_2RA1LB1LA (bbch)
|
| num(4,3) | 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)
|
Maximum Space Function (BBspace(n,m))
| 2 Symbols: | Cells visited | Champions |
|---|---|---|
| BBspace(1,2) | 1 | 1RZ--- (bbch)
|
| BBspace(2,2) | 4 | 1RB1LB_1LA1RZ (bbch) and 1RB0LB_1LA1RZ (bbch)
|
| BBspace(3,2) | 7 | 1RB1RC_1LC1RZ_1RA0LB (bbch) and 1RB0RC_1LC1RZ_1RA0LB (bbch)
|
| BBspace(4,2) | 16 | 1RB0RA_1LC0RD_0LD0LB_1RA1RZ (bbch)
|
| BBspace(5,2) | 12289 | 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
|
| 3 Symbols: | Cells visited | Champions |
|---|---|---|
| BBspace(1,3) | ||
| BBspace(2,3) | 9 | 1RB2LB1RZ_2LA2RB1LB (bbch)
|
| BBspace(2,4) | 2050 | 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
|
Size of the runtime spectrum (R(n,m))
There currently doesn't seem to be any available information about values of this function.
Reversible Turing Machines
Maximum Shifts Function (BBrev(n,m))
| 2 Symbols: | Steps | Champions |
|---|---|---|
| BBrev(1) | ||
| BBrev(2) | 6 | 0RB1RZ_1LA1RB (bbch)
|
| BBrev(3) | 17 | 0RB1RZ_0LC1RA_1RB1LC (bbch)
|
| BBrev(4) | 48 | 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
|
| BBrev(5) | 388 | 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
|
| BBrev(6) | ≥ 537,556 | 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
|
| BBrev(7) | 1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ (bbch)
|
Maximum Score Function (Σrev(n,m))
| 2 Symbols: | Score | Champions |
|---|---|---|
| Σrev(1) | ||
| Σrev(2) | ≥ 2 | 0RB1RZ_1LA1RB (bbch)
|
| Σrev(3) | ≥ 4 | 0RB1RZ_0LC1RA_1RB1LC (bbch)
|
| Σrev(4) | ≥ 6 | 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
|
| Σrev(5) | ≥ 16 | 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
|
| Σrev(6) | ≥ 1161 | 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
|
Blanking Busy Beaver (BLB(n,m))
| 2 Symbols: | Steps | Champions |
|---|---|---|
| BLB(1) | nonexistent | nonexistent |
| BLB(2) | 8[4] | 1RB0RA_1LB1LA (bbch)
|
| BLB(3) | ≥ 34[5] | 1RB1LB_1LA1LC_1RC0LC (bbch)
|
| BLB(4) | ≥ 32,779,477 | 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
|
| BLB(5) | ≥ 32,810,047[6] | 1RB1LC_1RD0LE_0RD0RC_1LD1LA_1RB1RE (bbch)
|
| BLB(6) | ≥ 65,538,549[7] | 1RB1LE_1RD1RB_0RD0RE_1LD1LA_0RF1RF_0LC1LC (bbch)
|
| 3 Symbols: | Steps | Champions |
|---|---|---|
| BLB(1,3) | nonexistent | nonexistent |
| BLB(2,3) | ≥ 77[5] | 1RB2LA0RB_1LA0LB1RA (bbch)
|
| BLB(3,3) | > 1042,745 | 1RB2RB1LA_2LC0LB2LB_2RC2RA0LC (bbch)
|
| 4 Symbols: | Steps | Champions |
|---|---|---|
| BLB(1,4) | nonexistent | nonexistent |
| BLB(2,4) | ≥ 1,367,361,263,049[5] | 1RB2RA1RA2RB_2LB3LA0RB0RA (bbch)
|
Lazy Beaver
Shifts Function (LB(n,m))
| 1 State | 2 States | 3 States | 4 States | 5 States | 6 States | |
|---|---|---|---|---|---|---|
| 2 Symbols | 2 | 7 | 22 | 72 | 427 | 8407 |
| 3 Symbols | 2 | 23 | 351 | 189,270 | ||
| 4 Symbols | 2 | 93 | 242,789 | |||
| 5 Symbols | 2 | 956 | ||||
| 6 Symbols | 2 | 33,851 |
Period-oriented Busy Beavers
Busy Preperiodic Beaver (BBS(n,m))
| 2 Symbols: | Preperiod | Champions |
|---|---|---|
| BBS(1,2) | 0 | 1RA--- (bbch)
|
| BBS(2,2) | ≥ 9 | 1RB0LB_1LA0RB (bbch) proven winner?
|
| BBS(3,2) | 101 | 1RB1LB_0RC0LA_1LC0LA (bbch)
|
| BBS(4,2) | ≥ 119,120,230,102 | 1RB1LC_0LA1RD_0RB0LC_1LA0RD (bbch)
|
| BBS(5,2) | > 1014,006 | 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch)
|
| 3 Symbols: | Preperiod | Champions |
|---|---|---|
| BBS(1,3) | 0 | 1RA------ (bbch)
|
| BBS(2,3) | ≥ 165[8] | 1RB0LA---_1LB2LA0RB (bbch)
|
| BBS(3,3) | > 10 ↑↑ 6 | 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch)
|
| BBS(4,3) | > | 1RB1RD1LC_2LB1RB1LC_1LB1LA1LD_0RB2RA2RD (bbch)
|
| 4 Symbols: | Preperiod | Champions |
|---|---|---|
| BBS(1,4) | 0 | 1RA--------- (bbch)
|
| BBS(2,4) | ≥ 205,770,076,433,044,242,247,860 | 1RB2LA1RA1LB_0LB2RB3RB1LA (bbch)
|
Busy Periodic Beaver (BBP(n,m))
| 2 Symbols: | Period | Champions |
|---|---|---|
| BBP(1,2) | 1 | 1RA--- (bbch)
|
| BBP(2,2) | ≥ 9 | 1RB0RB_1LB1RA (bbch) proven winner?
|
| BBP(3,2) | 92 | 1RB0LA_0RC1LA_1LC0RB (bbch)
|
| BBP(4,2) | ≥ 212,081,736 | 1RB0LA_0RC1RD_1LD0RB_1LA1RB (bbch)
|
| 3 Symbols: | Period | Champions |
|---|---|---|
| BBP(1,3) | 1 | 1RA------ (bbch)
|
| BBP(2,3) | ||
| BBP(3,3) | ≥ 1,195 | 1RB2RC1LC_0RC0RB1LA_2LA2RC1LB (bbch)
|
| 4 Symbols: | Period | Champions |
|---|---|---|
| BBP(1,4) | 1 | 1RA--------- (bbch)
|
| BBP(2,4) | ≥ 33,209,131 | 1RB0RA3LB1RB_2LA0LB1RA2RB (bbch)
|
Instruction-Limited Busy Beaver
Instruction-Limited Classical Busy Beaver Functions
Instruction-Limited Maximum Shifts Function (BBi(n))
| Steps | Champions | |
|---|---|---|
| BBi(1) | 1 | 0RH (bbch) 1RH--- (bbch)
|
| BBi(2) | 3 | 0RB---_1LA--- (bbch)
|
| BBi(3) | 5 | 1RB1LB_1LA--- (bbch)
|
| BBi(4) | 16 | 1RB---_0RC---_1LC0LA (bbch)
|
| BBi(5) | 37 | 1RB2LB---_2LA2RB1LB (bbch)
|
| BBi(6) | 123 | 1RB3LA1RA0LA_2LA------3RA (bbch)
|
| BBi(7) | 3,932,963 | 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
|
| BBi(8) | 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)
| |
| BBi(9) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA--- (bbch)
|
Instruction-Limited Maximum Score Function (Σi(n))
| Score | Champions | |
|---|---|---|
| Σi(1) | 1 | 1RH--- (bbch)
|
| Σi(2) | 2 | 1RB---_1LA--- (bbch)
|
| Σi(3) | 4 | 1RB1LB_1LA--- (bbch)
|
| Σi(4) | 5 | 1RB0LB---_1LA2RA--- (bbch)
|
| Σi(5) | 9 | 1RB2LB---_2LA2RB1LB (bbch)
|
| Σi(6) | 14 | 1RB3LA1RA0LA_2LA------3RA (bbch)
|
| Σi(7) | 2050 | 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
|
| Σi(8) | 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)
| |
| Σi(9) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA--- (bbch)
|
Instruction-Limited Blanking Busy Beaver (BLBi(n))
| Steps | Champions | |
|---|---|---|
| BLBi(1) | nonexistent | nonexistent |
| BLBi(2) | nonexistent | nonexistent |
| BLBi(3) | 4 | 1RB0RA_1LA--- (bbch)
|
| BLBi(4) | 12 | 1RB---_1RC---_1LC0RC (bbch)
|
| BLBi(5) | 30 | 1RB------_1RC------_2LC2RC0RC (bbch)
|
| BLBi(6) | 77 | 1RB2LA0RB_1LA0LB1RA (bbch)
|
| BLBi(7) | 808 | 1RB------_1RC------_0RD2LC---_1LD2RD0RC (bbch)
|
| BLBi(8) | ≥ 1,367,361,263,049 | 1RB2RA1RA2RB_2LB3LA0RB0RA (bbch)
|
| BLBi(9) | > 1042,745 | 1RB2RB1LA_2LC0LB2LB_2RC2RA0LC (bbch)
|
Instruction-Limited Greedy Busy Beaver (gBBi(n))
| Steps | Champions | |
|---|---|---|
| gBBi(1) | 1 | |
| gBBi(2) | 3 | |
| gBBi(3) | 5 | |
| gBBi(4) | 13 | |
| gBBi(5) | 19 | |
| gBBi(6) | 25 | |
| gBBi(7) | 41 | |
| gBBi(8) | 55 | |
| gBBi(9) | 238 | |
| gBBi(10) | 941 | |
| gBBi(11) | 1341 | |
| gBBi(12) | 10465 | |
| gBBi(13) | 10675 | |
| gBBi(14) | ≥ 9,874,580 | 0RB6RB1LB---3LA1RB7RB2LB_1LA2RB3LA4RB5RB1LB5LA--- (bbch)
|
Program-Limited Busy Beaver
Busy Beaver for Lambda Calculus
Regular Busy Beaver for Lambda Calculus (BBλ(n))
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of BBλ(n) = n.
| BBλ(n) | Champions | |
|---|---|---|
| BBλ(21) | 22 | \(\1 1) (1 (\2))
|
| BBλ(22) | 24 | \(\1 1) (1 (\\1))\(\1 1 1) (1 1)
|
| BBλ(23) | 26 | \(\1 1) (1 (\\2))
|
| BBλ(24) | 30 | \(\1 1 1) (1 (\1))
|
| BBλ(25) | 42 | \(\1 1) (\1 (2 1))
|
| BBλ(26) | 52 | (\1 1) (\\2 (1 2))
|
| BBλ(27) | 44 | \\(\1 1) (\1 (2 1))
|
| BBλ(28) | 58 | \(\1 1) (\1 (2 (\2))))
|
| BBλ(29) | 223 | \(\1 1) (\1 (1 (2 1)))
|
| BBλ(30) | 160 | (\1 1 1) (\\2 (1 2)) and (\1 (1 1)) (\\2 (1 2))
|
| BBλ(31) | 267 | (\1 1) (\\2 (2 (1 2)))
|
| BBλ(32) | 298 | \(\1 1) (\1 (1 (2 (\2))))
|
| BBλ(33) | 1812 | \(\1 1) (\1 (1 (1 (2 1))))
|
| BBλ(34) | 327,686 | (\1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1) (\\2 (2 1))
|
| BBλ(35) | (\1 1 1) (\\2 (2 (2 1)))
| |
| BBλ(36) | (\1 1) (\1 (1 (\\2 (2 1))))
| |
| BBλ(37) | \(\1 1 1) (\\2 (2 (2 1)))
| |
| BBλ(38) | (\1 1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1 1) (\\2 (2 1))
| |
| BBλ(39) | (\1 1 1 1) (\\2 (2 (2 1)))
| |
| BBλ(40) | (\1 1 1) (\1 (\\2 (2 1)) 1)
| |
| BBλ(41) | (\1 (\1 1) 1) (\\2 (2 (2 1)))
| |
| BBλ(42) | \(\1 1 1) (\1 (\\2 (2 1)) 1)
| |
| BBλ(43) | (\1 1) (\1 (\1 (\\2 (2 1)) 2))
| |
| BBλ(44) | (\1 1 1 1) (\1 (\\2 (2 1)) 1)
| |
| BBλ(45) | \(\1 1) (\1 (\1 (\\2 (2 1)) 2))
| |
| BBλ(46) | \(\1 1 1 1) (\1 (\\2 (2 1)) 1)
| |
| BBλ(47) | ||
| BBλ(48) | (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
| |
| BBλ(49) | (\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))
| |
| BBλ(63) | (\1 1 (\\\1 3 2 1) 1 1 1) (\\2 (2 1))
| |
| BBλ(91) | (\1 1 (\1 1) (\\1 2 1) (\1 (\2 1 2))) (\\\2 3 (\3 1 2))
| |
| BBλ(1850) | Too large for this list
|
Oracle Busy Beaver for Lambda Calculus (BBλ1(n))
Note that .
| BBλ1(n) | Champions | |
|---|---|---|
| BBλ1(1) | 0 | |
| BBλ1(2) | 1 | 1
|
| BBλ1(3) | 0 | |
| BBλ1(4) | 4 | \1
|
| BBλ1(5) | 5 | \2
|
| BBλ1(6) | 6 | \\1
|
| BBλ1(7) | 7 | \\2
|
| BBλ1(8) | 26 | 1 (\1)
|
| BBλ1(9) | 9 | \\2
|
| BBλ1(10) | 36 | 1 (\\1)
|
| BBλ1(11) | 41 | 1 (\\2)
|
| BBλ1(12) | 266 | 1 (1 (\1))
|
| BBλ1(13) | 51 | 1 (\\2)
|
| BBλ1(14) | 1 (1 (\\1))
| |
| BBλ1(15) | 1 (1 (\\2))
| |
| BBλ1(16) | 1 (1 (1 (\1)))
| |
| BBλ1(17) | 1 (1 (\\\2))
| |
| BBλ1(18) | 1 (\1) 1 (\1)
| |
| BBλ1(19) | 1 (1 (1 (\\2)))
| |
| BBλ1(20) | 1 (\\1) 1 (\1)
| |
| BBλ1(21) | 1 (\\2) 1 (\1)
| |
| BBλ1(22) | 1 (1(\1)) 1(\1)
| |
| BBλ1(28) | 1 (\1) 1 (\1) 1 (\1)
| |
| BBλ1(29) | 1(\1)(\1 2 1)(\1)
|
Busy Beaver for De Bruijn Lambda Calculus
| n | Value | Champion |
|---|---|---|
| 7 | ≥ 7 | \1 1 1 1 1 1
|
| 8 | ≥ 16 | (\1 1) (\\2 (1 2))
|
| 9 | ≥ 68 | (\1 1) (\\2 (2 (1 2)))
|
| 10 | (\1 1 1) (\\2 (2 (2 1)))
| |
| 11 | (\1 1 1 1) (\\2 (2 (2 1)))
| |
| 12 | (\1 1 1) (\1 (\\2 (2 1)) 1)
| |
| 13 | (\1 1) (\1 (\1 (\\2 (2 1)) 2))
| |
| 14 | (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
| |
| 15 | (\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))
| |
| 18 | (\1 1 (\\\1 3 2 1) 1 1 1) (\\2 (2 1))
| |
| 26 | (\1 1 (\1 1) (\\1 2 1) (\1 (\2 1 2))) (\\\2 3 (\3 1 2))
|
Busy Beaver for SKI calculus
Busy Beaver for SKI calculus
| n | Value | Champion |
|---|---|---|
| 1 | 1 | S |
| 2 | 2 | SS |
| 3 | 3 | SSS |
| 4 | 4 | SSSS |
| 5 | 6 | SSS(SS) |
| 6 | 17 | SSS(SI)S |
| 7 | ≥ 18 | S(SSS(SI)S) |
| 8 | ≥ 19 | SS(SSS(SI)S) |
| 9 | ≥ 519 | SSI((S(SS)S)S)K |
| 10 | ≥ 1041 | SSI((S(SS)S)S)KS |
Busy Beaver for SK calculus
| n | Value | Champion |
|---|---|---|
| 1 | = 1 | S |
| 2 | = 2 | SS |
| 3 | = 3 | SSS |
| 4 | = 4 | SSSS
|
| 5 | = 6 | SSS(SS)
|
| 6 | ≥ 8 | SSS(SSS)
|
| 7 | ≥ 10 | SSS(SSSS)
|
| 8 | ≥ 23 | SSS(S(SKS))S
|
Fractran (BBf(n))
| n | BBf(n) | Example Champion | Vector Representation |
|---|---|---|---|
| 2 | 1 | [1/2]
|
|
| 3 | 1 | [3/2]
|
|
| 4 | 1 | [9/2]
|
|
| 5 | 2 | [3/2, 1/3]
|
|
| 6 | 3 | [9/2, 1/3]
|
|
| 7 | 4 | [27/2, 1/3]
|
|
| 8 | 5 | [81/2, 1/3]
|
|
| 9 | 6 | [243/2, 1/3]
|
|
| 10 | 7 | [729/2, 1/3]
|
|
| 11 | 10 | [27/2, 25/3, 1/5]
|
|
| 12 | 13 | [81/2, 25/3, 1/5]
|
|
| 13 | 17 | [81/2, 125/3, 1/5]
|
|
| 14 | 21 | [243/2, 125/3, 1/5]
|
|
| 15 | 28 | [1/45, 4/5, 3/2, 25/3]
|
|
| 16 | 53 | [1/45, 4/5, 3/2, 125/3]
|
|
| 17 | 107 | [5/6, 49/2, 3/5, 40/7]
|
|
| 18 | 211 | [5/6, 49/2, 3/5, 80/7]
|
|
| 19 | 370 | [5/6, 49/2, 3/5, 160/7]
|
|
| 20 | ≥ 746 | [7/15, 22/3, 6/77, 5/2, 9/5]
|
|
| 21 | ≥ 31,957,632 | [7/15, 4/3, 27/14, 5/2, 9/5]
|
|
| 22 | [1/12, 9/10, 14/3, 11/2, 5/7, 3/11]
|
Cyclic Tag (CTBB(n))
| Runtime | Champions | |
|---|---|---|
| CTBB(2) | 5[9] | |
| CTBB(3) | > 38[10] | |
| CTBB(4) | ≥ 672[11] | |
| CTBB(5) | ≥ 2^2^2^2^182[12] | |
| CTBB(6) | > 2↑↑↑131[13] | |
| CTBB(7) | > 4↑↑↑↑(4↑↑↑3)[14] [15] |
Minsky Machines (MBB(n))
| Domain | Halting Time | Champion |
|---|---|---|
| MBB(1) | 1 | 0+Z
|
| MBB(2) | 3 | 0+B_0-B*
|
| MBB(3) | 5 | 0+B_0+C_0-C*
|
| MBB(4) | 10 | 0+B_1+C_0-BD_1-C*
|
| MBB(5) | 24 | 0-DB_0+C_1-ED_1+A_1-B*
|
| MBB(6) | ≥ 49 | 0+B_1-FC_1+D_0-CE_0+A_1-A*
|
Turmites
Terminating Turmites (TT(n,k), 1D Turmites)
Where n is the amount of states and k is the amount of symbols.
| Domain | Runtime | Champions |
|---|---|---|
| TT(2) | ≥ 13 | 1TB---_1PA0PB
|
| TT(3) | ≥ 82 | 1PB0PA_1TA0PC_1PA---
|
| TT(4) | ≥ 48,186 | 1TB1PA_1PC0PA_1TA0PD_---1TA
|
| TT(2,3) | ≥ 223 | 1TB0PA2PA_2PA---1PA
|
| TT(3,3) | ≥ 45,153 | 1PB1PA1TA_2TB2PB2PC_---2PA1TC
|
| TT(2,4) | > 3.467*1015 | 1TA2PB3TB---_3TA1PB1TA1PA
|
2D Turmites (turNing machines)
There are currently no known/available Champions for this function.
Doodle Function (doodle(c,n))
doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2).
| 2 Symbols: | Runtime | Champions |
|---|---|---|
| doodle(3,2) | ≥ 487 |
Bug Function
Bug(2,2) = 2
#### #S-# #.F# ####
Bug(3,3) = 8
##### #S..# #.#.# #.#F# #####
Bug(4,4) = 20
###### #S...# #..### #....# #..#F# ######
Bug(5,5) = 42
####### #S...## #.....# #.....# #.#.### #.#..F# #######
Bug(6,6) = 96
######## #S.....# #.###.## #.#...## #.#....# #..#.### #..#..F# ########
Bug(7,7) = 218
######### #S.###..# #......## #.#.##..# #..#...## #..#....# #...#.### #..#-..F# #########
Bug(8,8) = 506
########## #S.#.....# #.#..##.## #.#.##..## #....##..# #.#.#...## #..##....# #....#.### #....#..F# ##########
References
- ↑ 1.0 1.1 S. Ligocki. "BB(3,4) > Ack(14)." https://www.sligocki.com/2024/05/22/bb-3-4-a14.html Blog post, 2024. Accessed 15 August 2025.
- ↑ 2.0 2.1 S. Ligocki, "BB(2,6) > 10↑↑10↑↑10↑↑3". Blog post, 2023. Accessed 15 August 2025.
- ↑ Nick Drozd. "BBB(3,3) > 10↑↑6". Accessed 15 August 2025.
- ↑ 4.0 4.1 Nick Drozd. "Blanking Beavers". Accessed 15 August 2025.
- ↑ 5.0 5.1 5.2 Nick Drozd. "Latest Beeping Busy Beaver Results". Accessed 15 August 2025.
- ↑ Comment #71 "https://scottaaronson.blog/?p=5661". Accessed 26 September 2025.
- ↑ Comment #62 "https://scottaaronson.blog/?p=5661". Accessed 26 September 2025.
- ↑ Nick Drozd. Blanking Beavers
- ↑ https://discord.com/channels/960643023006490684/960643023530762341/1440163057463726233
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1440193579006951517
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1443246244142252043
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1443298934217900063
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1442847677883875479
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1442950825545564281
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1442819117735346217