User:Polygon/Page for analyses: Difference between revisions
→{{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}: Added rule #22 |
→{{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}: Expanded description |
||
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
A page for analyses of individual machines. | A page for analyses of individual machines. | ||
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}= | ={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}= | ||
1. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. | 1. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in September 2025. This TM runs the shortest of Pavel's potential champions, achieving a score of about <math>10 \uparrow\uparrow 9.873987</math>. | ||
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content"> | <div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content"> | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 218: | Line 218: | ||
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}}= | ={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}}= | ||
2. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. | 2. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM runs the longest of Pavel's potential champions and is - as of October 20th 2025 - the highest scoring BB(4,3) TM with score > <math>2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 7.92 \times 10^{28}</math>. | ||
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content"> | <div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content"> | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 806: | Line 806: | ||
={{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}= | ={{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}= | ||
3. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM has rules which are based on the remainder of some value modulo 4, although it is quite unlucky that three of the four possible remainders lead to halting. The TM achieves a score of around <math>3 \uparrow\uparrow\uparrow 88574</math>. | |||
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content"> | <div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content"> | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 1,096: | Line 1,096: | ||
--> 0^inf (11)^3a+3 A> 0 1^3 S | --> 0^inf (11)^3a+3 A> 0 1^3 S | ||
--> 0^inf (11)^3a+3 1 B> 1^3 S | --> 0^inf (11)^3a+3 1 B> 1^3 S | ||
Call this rule 19*** | |||
with: | |||
0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S | |||
Continuing: | |||
--> 0^inf (11)^3a+3 1 <A 2 1^2 S | --> 0^inf (11)^3a+3 1 <A 2 1^2 S | ||
--> 0^inf 1 <A (22)^3a+3 2 1^2 S | --> 0^inf 1 <A (22)^3a+3 2 1^2 S | ||
--> 0^inf <B (22)^3a+4 1^2 S | --> 0^inf <B (22)^3a+4 1^2 S | ||
Call this rule 19** | |||
with: | |||
0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S | |||
Continuing: | |||
--> 0^inf <C 2 (22)^3a+4 1^2 S | --> 0^inf <C 2 (22)^3a+4 1^2 S | ||
--> 0^inf 2 D> 2 (22)^3a+4 1^2 S | --> 0^inf 2 D> 2 (22)^3a+4 1^2 S | ||
Line 1,167: | Line 1,175: | ||
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf | --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf | ||
= 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf | = 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf | ||
23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf | |||
by: | |||
0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf | |||
--> 0^inf 2 1 (11)^g_2(a) A> 2 1 2 0^inf by rule 18 | |||
--> 0^inf <B (22)^3*g_2(a)+4 2 0^inf by rule 19** | |||
--> 0^inf <C (22)^3*g_2(a)+5 0^inf | |||
--> 0^inf 2 D> (22)^3*g_2(a)+5 0^inf | |||
--> 0^inf 2 (11)^3*g_2(a)+5 D> 0^inf | |||
--> 0^inf 2 1 (11)^3*g_2(a)+5 A> 0^inf | |||
--> 0^inf 2 (11)^3*g_2(a)+6 B> 0^inf | |||
--> 0^inf 2 (11)^3*g_2(a)+6 <C 2 0^inf | |||
--> 0^inf 2 <C (11)^3*g_2(a)+6 2 0^inf | |||
--> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf | |||
24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf | |||
by: | |||
0^inf (11)^a A> 0 (22)^1 1 2 0^inf | |||
--> 0^inf 2 1 (11)^g_2(a) A> 2 2 0^inf by rule 18 | |||
--> 0^inf (11)^3*g_2(a)+3 1 B> 2 0^inf by rule 19*** | |||
--> 0^inf (11)^3*g_2(a)+3 1 <A 0^inf | |||
--> 0^inf 1 <A (22)^3*g_2(a)+3 0^inf | |||
--> 0^inf <B 2 (22)^3*g_2(a)+3 0^inf | |||
--> 0^inf <C (22)^3*g_2(a)+4 0^inf | |||
--> 0^inf 2 D> (22)^3*g_2(a)+4 0^inf | |||
--> 0^inf 2 (11)^3*g_2(a)+4 D> 0^inf | |||
--> 0^inf 2 1 (11)^3*g_2(a)+4 A> 0^inf | |||
--> 0^inf 2 (11)^3*g_2(a)+5 B> 0^inf | |||
--> 0^inf 2 (11)^3*g_2(a)+5 <C 2 0^inf | |||
--> 0^inf 2 <C (11)^3*g_2(a)+5 2 0^inf | |||
--> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf | |||
25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf | |||
by: | |||
0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf | |||
--> 0^inf 2 1 (11)^g_2(a) A> 0^inf by rule 14 | |||
--> 0^inf 2 (11)^g_2(a)+1 B> 0^inf | |||
--> 0^inf 2 (11)^g_2(a)+1 <C 2 0^inf | |||
--> 0^inf 2 <C (11)^g_2(a)+1 2 0^inf | |||
--> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf | |||
</pre> | </pre> | ||
==Functions== | ==Functions== | ||
g_1(n) = 3n + 4 | <math>g_1(n) = 3n + 4</math> | ||
Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math> | Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math> | ||
And 1 = 3^1 - 2 | And <math>1 = 3^1 - 2</math> | ||
It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math> | It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math> | ||
Line 1,202: | Line 1,250: | ||
-->g_2^k(1) mod 4 = 3 | -->g_2^k(1) mod 4 = 3 | ||
</pre> | </pre> | ||
<pre> | |||
Let's have L(a, b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf | |||
* L(a, 4k+v) --> L(g_3^k(a), v) by rule 21 | |||
* L(a, 0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25 | |||
* L(a,4k+v) --> L(g_3^k(a),v) by rule 21 | * L(a, 1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24 | ||
* L(a,0) --> | * L(a, 2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23 | ||
* L(a,1) --> | * L(a, 3) --> L(1, 6*g_2(a) + 12) by rule 22 | ||
* L(a,2) --> | </pre> | ||
* L(a,3) --> | |||
==Trajectory== | ==Trajectory== | ||
Line 1,241: | Line 1,290: | ||
S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf | S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf | ||
S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf | S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf | ||
= L(1,3) after 34 steps | = L(1, 3) after 34 steps | ||
</pre> | </pre> | ||
L(1, 3) --> <math>L(1, 6*g_2(1) + 12)</math> by rule 22, which can be simplified to L(1, 354294) | |||
--> <math>L(g_3^{88573}(1), 2)</math> | |||
<math>L(g_3^{88573}(1), 2)</math> --> 0^inf 1 Z> <math>(11)^{3 \times (g_2(g_3^{88573}(1)) +6}</math> 2 0^inf | |||
<math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math> | |||
==Approximate Score== | |||
<math>g_2(n) = 3^{3n+7}-2</math> | |||
<math>3^{n} < g_2(n) < 3^{3^{n}}</math> | |||
<math>g_3(n) = g_2^{2 \times (g_2(n)) +3}(1)</math> | |||
<math>(3 \uparrow)^{k} n < g_2^{k}(n) < (3 \uparrow)^{2k} n</math> | |||
<math>(3 \uparrow)^{k} 1 < g_2^{k}(1) < (3 \uparrow)^{2k} 1</math> | |||
<math>3 \uparrow\uparrow k < g_2^{k}(1) < 3 \uparrow\uparrow 2k</math> | |||
<math>3 \uparrow\uparrow 2 \times g_2(n) +6 < g_3(n) < 3 \uparrow\uparrow 4 \times g_2(n) +12</math> | |||
<math>3 \uparrow\uparrow 2 \times 3^{3 \uparrow\uparrow 2 \times g_2(n) +6} +6 < g_3^{2}(n)</math> | |||
<math>3 \uparrow\uparrow 3 \uparrow\uparrow (2 \times g_2(n) +7) < g_3^{2}(n) < 3 \uparrow\uparrow 3 \uparrow\uparrow (4 \times g_2(n) +13)</math> | |||
<math>(3 \uparrow\uparrow)^{k} (2 \times g_2(n) + 7) < g_3^{k}(n) < (3 \uparrow\uparrow)^{k} (5 \times g_2(n) + 13)</math> | |||
<math>(3 \uparrow\uparrow)^{k} 118101 < g_3^{k}(1) < (3 \uparrow\uparrow)^{k} 295248</math> | |||
<math>3 \uparrow\uparrow\uparrow k+1 < g_3^{k}(1) < 3 \uparrow\uparrow\uparrow k+2</math> | |||
<math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math> | |||
<math>3 \uparrow\uparrow\uparrow 88574 < \sigma < S < 3 \uparrow\uparrow\uparrow 88575</math> | |||
</div> | </div> |
Latest revision as of 18:23, 20 October 2025
A page for analyses of individual machines.
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD
(bbch)
1. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in September 2025. This TM runs the shortest of Pavel's potential champions, achieving a score of about .
0 | 1 | 2 | |
---|---|---|---|
A | 1RB | 1RD | 1LC |
B | 2LB | 1RB | 1LC |
C | 1RZ | 1LA | 1LD |
D | 2RB | 2RA | 2RD |
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S 1 B> 0 S --> S <A 1^2 S [+4 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] 7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps] by: S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a 2 <A (11)^b+1 S --> S (12)^a <C 1 (11)^b+1 S --> S (12)^a-1 1 <D (11)^b+2 S --> S (12)^a-1 2 A> (11)^b+2 S --> S (12)^a-1 2 (12)^b+2 A> S 8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps] Obtained by repeating rule 7. 9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps] by: S (12)^a <D (11)^b 0^inf --> S (12)^a D> (11)^b 0^inf --> S (12)^a (21)^b D> 0^inf --> S (12)^a (21)^b 2 B> 0^inf --> S (12)^a (21)^b 2 <B 2 0^inf --> S (12)^a (21)^b <C 1 2 0^inf --> S (12)^a <C (11)^b 1 2 0^inf --> S (12)^a-1 1 <D (11)^b+1 2 0^inf --> S (12)^a-1 2 A> (11)^b+1 2 0^inf --> S (12)^a-1 2 (12)^b+1 A> 2 0^inf --> S (12)^a-1 2 (12)^b+1 <C 1 0^inf --> S (12)^a-1 2 (12)^b 1 <D 11 0^inf --> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf --> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf --> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf --> S (12)^a-1 2^2 <A (11)^2b+2 0^inf --> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf 10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf Obtained by repeating rule 9. 11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps] by: S (11)^a <D (11)^b 0^inf --> S (11)^a-1 1 2 A> (11)^b 0^inf --> S (11)^a-1 (12)^b+1 A> 0^inf --> S (11)^a-1 <A (11)^b+2 0^inf --> S (11)^a-1 D> (11)^b+2 0^inf --> S (11)^a-1 (21)^b+2 D> 0^inf --> S (11)^a-1 (21)^b+2 2 B> 0^inf --> S (11)^a-1 (21)^b+2 2 <B 2 0^inf --> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf --> S (11)^a-1 <C (11)^b+2 1 2 0^inf --> S (11)^a-2 1 <A (11)^b+3 2 0^inf --> S (11)^a-2 1 D> (11)^b+3 2 0^inf --> S (11)^a-2 1 (21)^b+3 D> 2 0^inf --> S (11)^a-2 1 (21)^b+3 2 D> 0^inf --> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf --> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf --> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf --> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf Note that 1 (21)^k = (12)^k 1 = S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf --> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf --> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf --> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf --> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf --> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf --> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf --> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf --> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf 12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps] by: S 1^a <A (11)^b 0^inf --> S 1^a D> (11)^b 0^inf --> S 1^a (21)^b D> 0^inf --> S 1^a (21)^b 2 B> 0^inf --> S 1^a (21)^b 2 <B 2 0^inf --> S 1^a (21)^b <C 1 2 0^inf --> S 1^a <C (11)^b 1 2 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf
Functions
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
- Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
- Rule 10: A(a, b, c) --> which becomes if c = 3.
- Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
Further: let
- If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)
- A(a, 0, c) -->
- A(2k + d, b, 3) -->
Trajectory
S=0: 0^inf A> 0^inf S=1: 0^inf 1 B> 0^inf S=5: 0^inf <A (11)^1 0^inf S=6: 0^inf 1 B> (11)^1 0^inf S=8: 0^inf 1 (11)^1 B> 0^inf S=9: 0^inf 1 (11)^1 <B 2 0^inf S=10: 0^inf 1 (11)^1 B> 2 0^inf S=11: 0^inf 1 (11)^1 <C 1 0^inf S=12: 0^inf (11)^1 <A (11)^1 0^inf S=21: 0^inf 1 <A (11)^2 2 0^inf by rule 12 S=22: 0^inf 1 D> (11)^2 2 0^inf S=26: 0^inf 1 (21)^2 D> 2 0^inf S=27: 0^inf 1 (21)^2 2 D> 0^inf S=28: 0^inf 1 (21)^2 2^2 B> 0^inf S=29: 0^inf 1 (21)^2 2^2 <B 2 0^inf S=30: 0^inf 1 (21)^2 2 <C 1 2 0^inf S=31: 0^inf 1 (21)^2 <D (11)^1 2 0^inf S=32: 0^inf 1 (21)^1 2^2 A> (11)^1 2 0^inf S=34: 0^inf 1 (21)^1 2^2 (12)^1 A> 2 0^inf S=35: 0^inf 1 (21)^1 2^2 (12)^1 <C 1 0^inf S=36: 0^inf 1 (21)^1 2^2 1 <D (11)^1 0^inf S=37: 0^inf 1 (21)^1 2^3 A> (11)^1 0^inf S=39: 0^inf (12)^2 2^2 (12)^1 A> 0^inf S=46: 0^inf (12)^2 2^2 <A (11)^2 0^inf S=47: 0^inf (12)^2 2 <C 1 (11)^2 0^inf S=48: 0^inf (12)^2 <D (11)^3 0^inf S=172: 0^inf (12)^1 <D (11)^9 0^inf by rule 9 S=716: 0^inf <D (11)^21 0^inf by rule 9 S=717: 0^inf 2 B> (11)^21 0^inf S=759: 0^inf 2 (11)^21 B> 0^inf S=760: 0^inf 2 (11)^21 <B 2 0^inf S=761: 0^inf 2 (11)^21 B> 2 0^inf S=762: 0^inf 2 (11)^21 <C 1 0^inf S=763: 0^inf 2 (11)^20 1 <A (11)^1 0^inf S=772: 0^inf 2 (11)^20 <A (11)^2 2 0^inf S=773: 0^inf 2 (11)^20 D> (11)^2 2 0^inf S=777: 0^inf 2 (11)^20 (21)^2 D> 2 0^inf S=778: 0^inf 2 (11)^20 (21)^2 2 D> 0^inf S=779: 0^inf 2 1 (11)^19 1 (21)^2 2^2 B> 0^inf S=780: 0^inf 2 1 (11)^19 (12)^3 2 <B 2 0^inf S=781: 0^inf 2 1 (11)^19 (12)^3 <C 1 2 0^inf S=782: 0^inf 2 1 (11)^19 (12)^2 1 <D (11)^1 2 0^inf S=783: 0^inf 2 1 (11)^19 (12)^2 2 A> (11)^1 2 0^inf S=785: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 A> 2 0^inf S=786: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 <C 1 0^inf S=787: 0^inf 2 1 (11)^19 (12)^2 2 1 <D (11)^1 0^inf S=788: 0^inf 2 1 (11)^19 (12)^2 2^2 A> (11)^1 0^inf S=790: 0^inf 2 1 (11)^19 (12)^2 2^2 (12)^1 A> 0^inf S=797: 0^inf 2 1 (11)^19 (12)^2 2^2 <A (11)^2 0^inf S=798: 0^inf 2 1 (11)^19 (12)^2 2 <C 1 (11)^2 0^inf S=799: 0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf = A(19, 2, 3)
A(19, 2, 3) -->
Let m =
--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf
Final trajectory: 0^inf 2 1 (11)^1 <D (11)^m 0^inf --> 0^inf 2 1 1 2 A> (11)^m 0^inf --> 0^inf 2 1 (12)^m+1 A> 0^inf --> 0^inf 2 1 <A (11)^m+2 0^inf --> 0^inf 2 1 D> (11)^m+2 0^inf --> 0^inf (21)^m+3 D> 0^inf --> 0^inf (21)^m+3 2 B> 0^inf --> 0^inf (21)^m+3 2 <B 2 0^inf --> 0^inf (21)^m+3 <C (12)^1 0^inf --> 0^inf <C (11)^m+3 (12)^1 0^inf --> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf Score = 2m + 9
Approximate Score
Score calculated in HyperCalc:
(10^)^8 30,302,671.815163
Or in tetration: 10^^9.873987 (truncated)
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD
(bbch)
2. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM runs the longest of Pavel's potential champions and is - as of October 20th 2025 - the highest scoring BB(4,3) TM with score > .
0 | 1 | 2 | |
---|---|---|---|
A | 1RB | 1RD | 1LC |
B | 2LB | 1RB | 1LC |
C | 1RZ | 1LA | 1LD |
D | 0RB | 2RA | 2RD |
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S A> 0^2 S --> S <A 1^2 S [+5 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] by: S (12)^a A> 0^2 S --> S (12)^a <A (11)^1 S --> S <A (11)^a+1 S 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] by: S A> (11)^1 2^b S --> S (12)^1 A> 2^b S --> S (12)^1 <C 1 2^b-1 S --> S 1 <D (11)^1 2^b-1 S --> S 2 A> (11)^1 2^b-1 S 8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] by repetition of rule 7 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] by: S 2 <D (11)^a 0^2 S --> S 2 D> (11)^a 0^2 S --> S 2 (21)^a D> 0^2 S --> S 2 (21)^a <B 2^2 S --> S 2 (21)^a B> 2^2 S --> S 2 (21)^a <C 1 2 S --> S 2 <C (11)^a 1 2 S --> S <D (11)^a+1 2 S 11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] by: S 2 <D (11)^a 2 0^2 S --> S 2 D> (11)^a 2 0^2 S --> S 2 (21)^a D> 2 0^2 S --> S 2 (21)^a 2 D> 0^2 S --> S 2 (21)^a 2 <B 2^2 S --> S 2 (21)^a <C 1 2^2 S --> S 2 <C (11)^a 1 2^2 S --> S <D (11)^a+1 2^2 S 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] by: S 1^a <A (11)^b 0^2 S --> S 1^a D> (11)^b 0^2 S --> S 1^a (21)^b D> 0^2 S --> S 1^a (21)^b <B 2^2 S --> S 1^a (21)^b B> 2^2 S --> S 1^a (21)^b <C 1 2 S --> S 1^a <C (11)^b 1 2 S --> S 1^a-1 <A (11)^b+1 2 S 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] by: S 1^a <A (11)^b 2 0^2 S --> S 1^a D> (11)^b 2 0^2 S --> S 1^a (21)^b D> 2 0^2 S --> S 1^a (21)^b 2 D> 0^2 S --> S 1^a (21)^b 2 <B 2^2 S --> S 1^a (21)^b <C 1 2^2 S --> S 1^a <C (11)^b 1 2^2 S --> S 1^a-1 <A (11)^b+1 2^2 S 14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] by: S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a 2 A> (11)^b 0^2 S --> S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a 2 <A (11)^b+1 S --> S (12)^a <C 1 (11)^b+1 S --> S (12)^a-1 1 <D (11)^b+2 S 15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] by repetition of rule 14 16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps] by: S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a 2^2 A> (11)^b 0^inf --> S (12)^a 2^2 (12)^b A> 0^inf --> S (12)^a 2^2 <A (11)^b+1 0^inf --> S (12)^a 2 <C 1 (11)^b+1 0^inf --> S (12)^a <D (11)^b+2 0^inf --> S (12)^a-1 1 <D (11)^b+3 2 0^inf by rule 10 --> S (12)^a-1 2 A> (11)^b+3 2 0^inf --> S (12)^a-1 2 (12)^b+3 A> 2 0^inf --> S (12)^a-1 2 (12)^b+3 <C 1 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf 17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf by: S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf by rule 16 --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf by rule 15 18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf by repetition of rule 17 --- 19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf by: S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 A> (11)^b 2 0^inf --> S (12)^a 2^2 (12)^b A> 2 0^inf --> S (12)^a 2^2 (12)^b <C 1 0^inf --> S (12)^a 2^2 (12)^b-1 1 <D (11)^1 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf by rule 15 20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf by: S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 A> (11)^b 2 0^inf --> S (12)^a 2 (12)^b A> 2 0^inf --> S (12)^a 2 (12)^b <C 1 0^inf --> S (12)^a 2 (12)^b-1 1 <D (11)^1 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15 21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf by: S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a 2^3 A> (11)^b 0^inf --> S (12)^a 2^3 (12)^b A> 0^inf --> S (12)^a 2^3 <A (11)^b+1 0^inf --> S (12)^a 2^2 <C 1 (11)^b+1 0^inf --> S (12)^a 2 <D (11)^b+2 0^inf --> S (12)^a <D (11)^b+3 2 0^inf by rule 10 --> S (12)^a-1 1 <D (11)^b+4 2^2 0^inf by rule 11 --> S (12)^a-1 2 A> (11)^b+4 2^2 0^inf --> S (12)^a-1 2 (12)^b+4 A> 2^2 0^inf --> S (12)^a-1 2 (12)^b+4 <C 1 2 0^inf --> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf --> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20 --> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*5)-5 0^inf by rule 18 = S (12)^a-1 2^2 1 <D (11)^(2^(b+4)*3-5) 0^inf 22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf by: S 1 <D (11)^b 2^2 0^inf --> S 2 A> (11)^b 2^2 0^inf --> S 2 (12)^b A> 2^2 0^inf --> S 2 (12)^b <C 1 2 0^inf --> S 2 (12)^b-1 1 <D (11)^1 2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf by rule 20 23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf by: S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a 2^3 A> (11)^b 0^inf --> S (11)^a 2^3 (12)^b A> 0^inf --> S (11)^a 2^3 <A (11)^b+1 0^inf --> S (11)^a 2^2 <C 1 (11)^b+1 0^inf --> S (11)^a 2 <D (11)^b+2 0^inf --> S (11)^a <D (11)^b+3 2 0^inf by rule 10 --> S (11)^a-1 1 2 A> (11)^b+3 2 0^inf --> S (11)^a-1 (12)^b+4 A> 2 0^inf --> S (11)^a-1 (12)^b+4 <C 1 0^inf --> S (11)^a-1 (12)^b+3 1 <D (11)^1 0^inf --> S (11)^a-1 1 <D (11)^2b+7 0^inf by rule 15 --> S (11)^a-1 2 A> (11)^2b+7 0^inf --> S (11)^a-1 2 (12)^2b+7 A> 0^inf --> S (11)^a-1 2 <A (11)^2b+8 0^inf --> S (11)^a-1 <C 1 (11)^2b+8 0^inf --> S (11)^a-2 1 <A (11)^2b+9 0^inf --> S (11)^a-2 <A (11)^2b+10 2 0^inf by rule 12 --> S (11)^a-3 1 <A (11)^2b+11 2^2 0^inf by rule 13 --> S (11)^a-3 1 D> (11)^2b+11 2^2 0^inf --> S (11)^a-3 1 (21)^2b+11 D> 2^2 0^inf --> S (11)^a-3 1 (21)^2b+11 2^2 D> 0^inf --> S (11)^a-3 1 (21)^2b+11 2^2 <B 2^2 0^inf --> S (11)^a-3 1 (21)^2b+11 2 <C 1 2^2 0^inf --> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf = S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf --> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22 = S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf 24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf by: 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf 2^3 A> (11)^c 0^inf --> 0^inf 2^3 (12)^c A> 0^inf --> 0^inf 2^3 <A (11)^c+1 0^inf --> 0^inf 2^2 <C 1 (11)^c+1 0^inf --> 0^inf 2 <D (11)^c+2 0^inf --> 0^inf <D (11)^c+3 2 0^inf by rule 10 --> 0^inf B> (11)^c+3 2 0^inf --> 0^inf (11)^c+3 B> 2 0^inf --> 0^inf (11)^c+3 <C 1 0^inf --> 0^inf (11)^c+2 1 <A (11)^1 0^inf --> 0^inf (11)^c+2 <A (11)^2 2 0^inf by rule 12 --> 0^inf (11)^c+1 1 <A (11)^3 2^2 0^inf by rule 13 --> 0^inf (11)^c+1 1 D> (11)^3 2^2 0^inf --> 0^inf (11)^c+1 1 (21)^3 D> 2^2 0^inf --> 0^inf (11)^c+1 1 (21)^3 2^2 D> 0^inf --> 0^inf (11)^c+1 1 (21)^3 2^2 <B 2^2 0^inf --> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf --> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf --> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22 = 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf 25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf by: 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2 2^3 A> (11)^c 0^inf --> 0^inf (11)^2 2^3 (12)^c A> 0^inf --> 0^inf (11)^2 2^3 <A (11)^c+1 0^inf --> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf --> 0^inf (11)^2 2 <D (11)^c+2 0^inf --> 0^inf (11)^2 <D (11)^c+3 2 0^inf by rule 10 --> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf --> 0^inf (11)^1 (12)^c+4 A> 2 0^inf --> 0^inf (11)^1 (12)^c+4 <C 1 0^inf --> 0^inf (11)^1 (12)^c+3 1 <D (11)^1 0^inf --> 0^inf (11)^1 1 <D (11)^2c+7 0^inf by rule 15 --> 0^inf (11)^1 2 A> (11)^2c+7 0^inf --> 0^inf (11)^1 2 (12)^2c+7 A> 0^inf --> 0^inf (11)^1 2 <A (11)^2c+8 0^inf --> 0^inf (11)^1 <C 1 (11)^2c+8 0^inf --> 0^inf 1 <A (11)^2c+9 0^inf --> 0^inf <A (11)^2c+10 2 0^inf by rule 12 --> 0^inf 1 B> (11)^2c+10 2 0^inf --> 0^inf 1 (11)^2c+10 B> 2 0^inf --> 0^inf 1 (11)^2c+10 <C 1 0^inf --> 0^inf (11)^2c+10 <A (11)^1 0^inf --> 0^inf (11)^2c+9 1 <A (11)^2 2 0^inf by rule 12 --> 0^inf (11)^2c+9 <A (11)^3 2^2 0^inf by rule 13 --> 0^inf (11)^2c+9 D> (11)^3 2^2 0^inf --> 0^inf (11)^2c+9 (21)^3 D> 2^2 0^inf --> 0^inf (11)^2c+9 (21)^3 2^2 D> 0^inf --> 0^inf (11)^2c+9 (21)^3 2^2 <B 2^2 0^inf --> 0^inf (11)^2c+9 (21)^3 2 <C 1 2^2 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22 = 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf 26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf by: 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^1 2^3 A> (11)^c 0^inf --> 0^inf 1 (11)^1 2^3 (12)^c A> 0^inf --> 0^inf 1 (11)^1 2^3 <A (11)^c+1 0^inf --> 0^inf 1 (11)^1 2^2 <C 1 (11)^c+1 0^inf --> 0^inf 1 (11)^1 2 <D (11)^c+2 0^inf --> 0^inf 1 (11)^1 <D (11)^c+3 2 0^inf by rule 10 --> 0^inf (11)^1 2 A> (11)^c+3 2 0^inf --> 0^inf (11)^1 2 (12)^c+3 A> 2 0^inf --> 0^inf (11)^1 2 (12)^c+3 <C 1 0^inf --> 0^inf (11)^1 2 (12)^c+2 1 <D (11)^1 0^inf --> 0^inf (11)^1 2 1 <D (11)^2c+5 0^inf by rule 15 --> 0^inf (11)^1 2^2 A> (11)^2c+5 0^inf --> 0^inf (11)^1 2^2 (12)^2c+5 A> 0^inf --> 0^inf (11)^1 2^2 <A (11)^2c+6 0^inf --> 0^inf (11)^1 2 <C 1 (11)^2c+6 0^inf --> 0^inf (11)^1 <D (11)^2c+7 0^inf --> 0^inf 1 2 A> (11)^2c+7 0^inf --> 0^inf (12)^2c+8 A> 0^inf --> 0^inf <A (11)^2c+9 0^inf --> 0^inf 1 B> (11)^2c+9 0^inf --> 0^inf 1 (11)^2c+9 B> 0^inf --> 0^inf 1 (11)^2c+9 <B 2 0^inf --> 0^inf 1 (11)^2c+9 B> 2 0^inf --> 0^inf 1 (11)^2c+9 <C 1 0^inf --> 0^inf 1 (11)^2c+8 1 <A (11)^1 0^inf --> 0^inf 1 (11)^2c+8 <A (11)^2 2 0^inf by rule 12 --> 0^inf (11)^2c+8 <A (11)^3 2^2 0^inf by rule 13 --> 0^inf (11)^2c+8 D> (11)^3 2^2 0^inf --> 0^inf (11)^2c+8 (21)^3 D> 2^2 0^inf --> 0^inf (11)^2c+8 (21)^3 2^2 D> 0^inf --> 0^inf (11)^2c+8 (21)^3 2^2 <B 2^2 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22 = 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf 27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf by: 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 2^3 A> (11)^c 0^inf --> 0^inf 1 2^3 (12)^c A> 0^inf --> 0^inf 1 2^3 <A (11)^c+1 0^inf --> 0^inf 1 2^2 <C 1 (11)^c+1 0^inf --> 0^inf 1 2 <D (11)^c+2 0^inf --> 0^inf 1 <D (11)^c+3 2 0^inf by rule 10 --> 0^inf 2 A> (11)^c+3 2 0^inf --> 0^inf 2 (12)^c+3 A> 2 0^inf --> 0^inf 2 (12)^c+3 <C 1 0^inf --> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf --> 0^inf 2 1 <D (11)^2c+5 0^inf by rule 15 --> 0^inf 2^2 A> (11)^2c+5 0^inf --> 0^inf 2^2 (12)^2c+5 A> 0^inf --> 0^inf 2^2 <A (11)^2c+6 0^inf --> 0^inf 2 <C 1 (11)^2c+6 0^inf --> 0^inf <D (11)^2c+7 0^inf --> 0^inf B> (11)^2c+7 0^inf --> 0^inf (11)^2c+7 B> 0^inf --> 0^inf (11)^2c+7 <B 2 0^inf --> 0^inf (11)^2c+7 B> 2 0^inf --> 0^inf (11)^2c+7 <C 1 0^inf --> 0^inf (11)^2c+6 1 <A (11)^1 0^inf --> 0^inf (11)^2c+6 <A (11)^2 2 0^inf by rule 12 --> 0^inf (11)^2c+5 1 <A (11)^3 2^2 0^inf by rule 13 --> 0^inf (11)^2c+5 1 D> (11)^3 2^2 0^inf --> 0^inf (11)^2c+5 1 (21)^3 D> 2^2 0^inf --> 0^inf (11)^2c+5 (12)^3 1 2^2 D> 0^inf --> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf --> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf --> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf --> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22 = 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf by: 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^1 2^3 A> (11)^c 0^inf --> 0^inf (11)^1 2^3 (12)^c A> 0^inf --> 0^inf (11)^1 2^3 <A (11)^c+1 0^inf --> 0^inf (11)^1 2^2 <C 1 (11)^c+1 0^inf --> 0^inf (11)^1 2 <D (11)^c+2 0^inf --> 0^inf (11)^1 <D (11)^c+3 2 0^inf by rule 10 --> 0^inf 1 2 A> (11)^c+3 2 0^inf --> 0^inf (12)^c+4 A> 2 0^inf --> 0^inf (12)^c+4 <C 1 0^inf --> 0^inf (12)^c+3 1 <D (11)^1 0^inf --> 0^inf 1 <D (11)^2c+7 0^inf by rule 15 --> 0^inf 2 A> (11)^2c+7 0^inf --> 0^inf 2 (12)^2c+7 A> 0^inf --> 0^inf 2 <A (11)^2c+8 0^inf --> 0^inf <C 1 (11)^2c+8 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf Note: Rule 29 is not relevant to this TMs trajectory. 29. 0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf by: 0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2 2^3 A> (11)^c 0^inf --> 0^inf 1 (11)^2 2^3 (12)^c A> 0^inf --> 0^inf 1 (11)^2 2^3 <A (11)^c+1 0^inf --> 0^inf 1 (11)^2 2^2 <C 1 (11)^c+1 0^inf --> 0^inf 1 (11)^2 2 <D (11)^c+2 0^inf --> 0^inf 1 (11)^2 <D (11)^c+3 2 0^inf by rule 10 --> 0^inf (11)^2 2 A> (11)^c+3 2 0^inf --> 0^inf (11)^2 2 (12)^c+3 A> 2 0^inf --> 0^inf (11)^2 2 (12)^c+3 <C 1 0^inf --> 0^inf (11)^2 2 (12)^c+2 1 <D (11)^1 0^inf --> 0^inf (11)^2 2 1 <D (11)^2c+5 0^inf by rule 15 --> 0^inf (11)^2 2^2 A> (11)^2c+5 0^inf --> 0^inf (11)^2 2^2 (12)^2c+5 A> 0^inf --> 0^inf (11)^2 2^2 <A (11)^2c+6 0^inf --> 0^inf (11)^2 2 <C 1 (11)^2c+6 0^inf --> 0^inf (11)^2 <D (11)^2c+7 0^inf --> 0^inf (11)^1 1 2 A> (11)^2c+7 0^inf --> 0^inf (11)^1 (12)^2c+8 A> 0^inf --> 0^inf (11)^1 <A (11)^2c+9 0^inf --> 0^inf 1 <A (11)^2c+10 2 0^inf by rule 12 --> 0^inf <A (11)^2c+11 2^2 0^inf by rule 13 --> 0^inf 1 B> (11)^2c+11 2^2 0^inf --> 0^inf 1 (11)^2c+11 B> 2^2 0^inf --> 0^inf 1 (11)^2c+11 <C 1 2 0^inf --> 0^inf (11)^2c+11 <A (11)^1 2 0^inf --> 0^inf (11)^2c+10 1 <A (11)^2 2^2 0^inf by rule 13 --> 0^inf (11)^2c+10 1 D> (11)^2 2^2 0^inf --> 0^inf (11)^2c+10 1 (21)^2 D> 2^2 0^inf --> 0^inf (11)^2c+10 (12)^2 1 2^2 D> 0^inf --> 0^inf (11)^2c+10 (12)^2 1 2^2 <B 2^2 0^inf --> 0^inf (11)^2c+10 (12)^2 1 2 <C 1 2^2 0^inf --> 0^inf (11)^2c+10 (12)^2 1 <D (11)^1 2^2 0^inf --> 0^inf (11)^2c+10 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22 = 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf
Functions
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let
Let , where
Rule 21 becomes:
Rule 23 becomes:
Rule 24 becomes:
Rule 25 becomes:
Rule 26 becomes:
Rule 27 becomes:
Rule 28 becomes:
- D(1, 0, c) --> halt with score 4c + 18
Rule 29 becomes:
By repeating rule 21, a stronger rule can be constructed:
If a is greater than or equal to 3: =
This rule can also be repeated, also note that and :
Trajectory
S=0: 0^inf A> 0^inf S=5: 0^inf <A (11)^1 0^inf S=6: 0^inf 1 B> (11)^1 0^inf S=8: 0^inf 1 (11)^1 B> 0^inf S=9: 0^inf 1 (11)^1 <B 2 0^inf S=10: 0^inf 1 (11)^1 B> 2 0^inf S=11: 0^inf 1 (11)^1 <C 1 0^inf S=12: 0^inf (11)^1 <A (11)^1 0^inf S=23: 0^inf 1 <A (11)^2 2 0^inf S=38: 0^inf <A (11)^3 2^2 0^inf S=39: 0^inf 1 B> (11)^3 2^2 0^inf S=45: 0^inf 1 (11)^3 B> 2^2 0^inf S=46: 0^inf 1 (11)^3 <C 1 2 0^inf S=47: 0^inf (11)^3 <A (11)^1 2 0^inf S=58: 0^inf 1 (11)^2 <A (11)^2 2^2 0^inf S=59: 0^inf 1 (11)^2 D> (11)^2 2^2 0^inf S=63: 0^inf 1 (11)^2 (21)^2 D> 2^2 0^inf S=65: 0^inf 1 (11)^2 (21)^2 2^2 D> 0^inf S=68: 0^inf 1 (11)^2 (21)^2 2^2 <B 2^2 0^inf S=69: 0^inf 1 (11)^2 (21)^2 2 <C 1 2^2 0^inf S=70: 0^inf (11)^2 (12)^2 1 <D (11)^1 2^2 0^inf --> 0^inf (11)^2 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf =0^inf (11)^2 (12)^2 2^2 1 <D (11)^1 0^inf = D(2, 2, 1) So, the TM starts in configuration D(2, 2, 1).
D(2, 2, 1) -->
f_1(n) = 2^(n+4)*3 - 5 Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1. Next, 3k+1 mod 3 = 1 So f_1(n) mod 3 = 1 Thus f_1^a(n) mod 3 = 1 f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n) Thus f_2(a,b) mod 3 = 1
-->
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
-->
-->
2e_3 + 7
Modulus: 2 + 7 --> 9 mod 3 = 0
-->
-->
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
-->
--> halts with score .
Approximate Score
, where
, where
This score would make 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD
(bbch) the new BB(4,3) champion.
1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD
(bbch)
3. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM has rules which are based on the remainder of some value modulo 4, although it is quite unlucky that three of the four possible remainders lead to halting. The TM achieves a score of around .
0 | 1 | 2 | |
---|---|---|---|
A | 1RB | 2LB | 0LB |
B | 2LC | 2LA | 0LA |
C | 2RD | 1LC | 1RZ |
D | 1RA | 2LD | 1RD |
S is any tape configuration 1. S 1^a <C S --> S <C 1^a S [+a steps] 2. S 1^a <D S --> S <D 2^a S [+a steps] 3. S D> 2^a S --> S 1^a D> S [+a steps] 4. S (11)^a <A S --> S <A (22)^a S [+2a steps] S (11)^a <B S --> S <B (22)^a S [+2a steps] 5. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24 steps] by: 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a <B 0 2 (22)^b-1 S [+1] --> 0^inf 2 <B (22)^a 0 2 (22)^b-1 S [+2a +1] --> 0^inf <A 0 (22)^a 0 2 (22)^b-1 S [+2a +2] --> 0^inf 1 B> 0 (22)^a 0 2 (22)^b-1 S [+2a +3] --> 0^inf 1 <C 2 (22)^a 0 2 (22)^b-1 S [+2a +4] --> 0^inf <C 1 2 (22)^a 0 2 (22)^b-1 S [+2a +5] --> 0^inf 2 D> 1 2 (22)^a 0 2 (22)^b-1 S [+2a +6] --> 0^inf 2 <D (22)^a+1 0 2 (22)^b-1 S [+2a +7] --> 0^inf 1 D> (22)^a+1 0 2 (22)^b-1 S [+2a +8] --> 0^inf 1 (11)^a+1 D> 0 2 (22)^b-1 S [+4a +10] --> 0^inf (11)^a+2 A> 2 (22)^b-1 S [+4a +11] --> 0^inf (11)^a+2 <B 0 (22)^b-1 S [+4a +12] --> 0^inf <B (22)^a+2 0 (22)^b-1 S [+6a +16] --> 0^inf <C 2 (22)^a+2 0 (22)^b-1 S [+6a +17] --> 0^inf 2 D> 2 (22)^a+2 0 (22)^b-1 S [+6a +18] --> 0^inf 2 1 (11)^a+2 D> 0 (22)^b-1 S [+8a +23] --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24] 6. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3b A> S by repetition of rule 5 7. 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28 steps] by: 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 (11)^a 1 B> (22)^b S [+1] --> 0^inf 2 1 (11)^a <A 0 2 (22)^b-1 S [+2] --> 0^inf 2 1 <A (22)^a 0 2 (22)^b-1 S [+2a +2] --> 0^inf 2 <B 2 (22)^a 0 2 (22)^b-1 S [+2a +3] --> 0^inf <A 0 2 (22)^a 0 2 (22)^b-1 S [+2a +4] --> 0^inf 1 B> 0 2 (22)^a 0 2 (22)^b-1 S [+2a +5] --> 0^inf 1 <C (22)^a+1 0 2 (22)^b-1 S [+2a +6] --> 0^inf <C 1 (22)^a+1 0 2 (22)^b-1 S [+2a +7] --> 0^inf 2 D> 1 (22)^a+1 0 2 (22)^b-1 S [+2a +8] --> 0^inf 2 <D 2 (22)^a+1 0 2 (22)^b-1 S [+2a +9] --> 0^inf 1 D> 2 (22)^a+1 0 2 (22)^b-1 S [+2a +10] --> 0^inf (11)^a+2 D> 0 2 (22)^b-1 S [+4a +13] --> 0^inf (11)^a+2 1 A> 2 (22)^b-1 S [+4a +14] --> 0^inf (11)^a+2 1 <B 0 (22)^b-1 S [+4a +15] --> 0^inf 1 <B (22)^a+2 0 (22)^b-1 S [+6a +19] --> 0^inf <A 2 (22)^a+2 0 (22)^b-1 S [+6a +20] --> 0^inf 1 B> 2 (22)^a+2 0 (22)^b-1 S [+6a +21] --> 0^inf 1 <A 0 (22)^a+2 0 (22)^b-1 S [+6a +22] --> 0^inf <B 2 0 (22)^a+2 0 (22)^b-1 S [+6a +23] --> 0^inf <C 2 2 0 (22)^a+2 0 (22)^b-1 S [+6a +24] --> 0^inf 2 D> (22)^1 0 (22)^a+2 0 (22)^b-1 S [+6a +25] --> 0^inf 2 1 1 D> 0 (22)^a+2 0 (22)^b-1 S [+6a +27] --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28] 8. 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 1 (11)^a+3 A> S [+8a +27 steps] by: 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 (11)^a <B 0^2 2 S [+1] --> 0^inf 2 <B (22)^a 0^2 2 S [+2a +1] --> 0^inf <A 0 (22)^a 0^2 2 S [+2a +2] --> 0^inf 1 B> 0 (22)^a 0^2 2 S [+2a +3] --> 0^inf 1 <C 2 (22)^a 0^2 2 S [+2a +4] --> 0^inf <C 1 2 (22)^a 0^2 2 S [+2a +5] --> 0^inf 2 D> 1 2 (22)^a 0^2 2 S [+2a +6] --> 0^inf 2 <D (22)^a+1 0^2 2 S [+2a +7] --> 0^inf 1 D> (22)^a+1 0^2 2 S [+2a +8] --> 0^inf 1 (11)^a+1 D> 0^2 2 S [+4a +10] --> 0^inf (11)^a+2 A> 0 2 S [+4a +11] --> 0^inf (11)^a+2 1 B> 2 S [+4a +12] --> 0^inf (11)^a+2 1 <A 0 S [+4a +13] --> 0^inf 1 <A (22)^a+2 0 S [+6a +17] --> 0^inf <B 2 (22)^a+2 0 S [+6a +18] --> 0^inf <C (22)^a+3 0 S [+6a +19] --> 0^inf 2 D> (22)^a+3 0 S [+6a +20] --> 0^inf 2 (11)^a+3 D> 0 S [+8a +26] --> 0^inf 2 1 (11)^a+3 A> S [+8a +27] 9. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by: 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^a <B 0 2 (22)^b-1 S --> 0^inf 2 1 <B (22)^a 0 2 (22)^b-1 S --> 0^inf 2 <A 2 (22)^a 0 2 (22)^b-1 S --> 0^inf <B 0 2 (22)^a 0 2 (22)^b-1 S --> 0^inf <C 2 0 2 (22)^a 0 2 (22)^b-1 S --> 0^inf 2 D> 2 0 2 (22)^a 0 2 (22)^b-1 S --> 0^inf 2 1 D> 0 2 (22)^a 0 (22)^b-1 2 S --> 0^inf 2 (11)^1 A> (22)^a 2 0 (22)^b-1 2 S --> 0^inf 2 (11)^3a+1 A> 2 0 2 (22)^b-1 S by rule 6 --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by rule 8 = 0^inf 2 1 (11)^g_1(a) A> (22)^b-1 S 10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S by repetition of rule 9 g_1(n) = 3n + 4 11. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S by: 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 (11)^a+1 B> (22)^b S --> 0^inf 2 (11)^a+1 <A 0 2 (22)^b-1 S --> 0^inf 2 <A (22)^a+1 0 2 (22)^b-1 S --> 0^inf <B 0 (22)^a+1 0 2 (22)^b-1 S --> 0^inf <C 2 0 (22)^a+1 0 2 (22)^b-1 S --> 0^inf 2 D> 2 0 (22)^a+1 0 2 (22)^b-1 S --> 0^inf 2 1 D> 0 (22)^a+1 0 2 (22)^b-1 S --> 0^inf 2 (11)^1 A> (22)^a+1 0 (22)^b-1 2 S --> 0^inf 2 (11)^3a+4 A> 0 (22)^b-1 2 S by rule 6 Call this rule 11-1 --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S by rule 7 Call this rule 11-2 12. 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31 steps] by: 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 (11)^a 1 B> 11 S [+1] --> 0^inf 2 (11)^a 1 <A 2 1 S [+2] --> 0^inf 2 1 <A (22)^a 2 1 S [+2a +2] --> 0^inf 2 <B (22)^a+1 1 S [+2a +3] --> 0^inf <A 0 (22)^a+1 1 S [+2a +4] --> 0^inf 1 B> 0 (22)^a+1 1 S [+2a +5] --> 0^inf 1 <C 2 (22)^a+1 1 S [+2a +6] --> 0^inf <C 1 2 (22)^a+1 1 S [+2a +7] --> 0^inf 2 D> 1 2 (22)^a+1 1 S [+2a +8] --> 0^inf 2 <D (22)^a+2 1 S [+2a +9] --> 0^inf 1 D> (22)^a+2 1 S [+2a +10] --> 0^inf 1 (11)^a+2 D> 1 S [+4a +14] --> 0^inf 1 (11)^a+2 <D 2 S [+4a +15] --> 0^inf <D (22)^a+3 S [+6a +20] --> 0^inf 1 A> (22)^a+3 S [+6a +21] --> 0^inf 1 <B 0 2 (22)^a+2 S [+6a +22] --> 0^inf <A 2 0 2 (22)^a+2 S [+6a +23] --> 0^inf 1 B> 2 0 2 (22)^a+2 S [+6a +24] --> 0^inf 1 <A 0 0 2 (22)^a+2 S [+6a +25] --> 0^inf <B 2 0 0 2 (22)^a+2 S [+6a +26] --> 0^inf <C (22)^1 0 0 2 (22)^a+2 S [+6a +27] --> 0^inf 2 D> (22)^1 0 0 2 (22)^a+2 S [+6a +28] --> 0^inf 2 (11)^1 D> 0 0 2 (22)^a+2 S [+6a +30] --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31] 13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S by: 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 2^b-3 S by rule 11-2 --> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 0 2^b-3 S by rule 10 = 0^inf 2 1 (11)^(3^(3a+7)-2) A> 0 2^b-3 S = 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S 14. 0^inf 2 1 (11)^a A> 0 2^3k+v S --> 0^inf 2 1 (11)^(g_2)^k(a) A> 0 2^v S by repetition of rule 13 15. 0^inf 2 1 <A S --> 0^inf 1 D> 2^3 S [+8 steps] by: 0^inf 2 1 <A S --> 0^inf 2 <B 2 S --> 0^inf <A 0 2 S --> 0^inf 1 B> 0 2 S --> 0^inf 1 <C 2 2 S --> 0^inf <C 1 2^2 S --> 0^inf 2 D> 1 2^2 S --> 0^inf 2 <D 2^3 S --> 0^inf 1 D> 2^3 S 16. 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf by: 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 (11)^a+1 B> 2 1 2 0^inf --> 0^inf 2 (11)^a+1 <A 0 1 2 0^inf --> 0^inf 2 <A (22)^a+1 0 1 2 0^inf --> 0^inf <B 0 (22)^a+1 0 1 2 0^inf --> 0^inf <C 2 0 (22)^a+1 0 1 2 0^inf --> 0^inf 2 D> 2 0 (22)^a+1 0 1 2 0^inf --> 0^inf 2 1 D> 0 (22)^a+1 0 1 2 0^inf --> 0^inf 2 (11)^1 A> (22)^a+1 0 1 2 0^inf --> 0^inf 2 (11)^3a+4 A> 0 1 2 0^inf by rule 6 --> 0^inf 2 (11)^3a+4 1 B> 1 2 0^inf --> 0^inf 2 (11)^3a+4 1 <A (22)^1 0^inf --> 0^inf 2 1 <A (22)^3a+5 0^inf --> 0^inf 1 D> 2 (22)^3a+6 0^inf by rule 15 --> 0^inf (11)^3a+7 D> 0^inf --> 0^inf (11)^3a+7 1 A> 0^inf --> 0^inf (11)^3a+8 B> 0^inf --> 0^inf (11)^3a+8 <C 2 0^inf --> 0^inf <C (11)^3a+8 2 0^inf --> 0^inf 2 D> (11)^3a+8 2 0^inf --> 0^inf 2 <D 2 1 (11)^3a+7 2 0^inf --> 0^inf 1 D> 2 1 (11)^3a+7 2 0^inf --> 0^inf (11)^1 D> 1 (11)^3a+7 2 0^inf --> 0^inf (11)^1 <D 2 (11)^3a+7 2 0^inf --> 0^inf <D 2^3 (11)^3a+7 2 0^inf --> 0^inf 1 A> (22)^1 2 (11)^3a+7 2 0^inf --> 0^inf 1 <B 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf <A 2 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf 1 B> 2 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf 1 <A 0 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf <B 2 0 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf <C 2 2 0 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf 2 D> 2^2 0 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3a+7 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf 17. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by: 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 (11)^3a+4 A> 0 2 1 S by rule 11-1 --> 0^inf 2 (11)^3a+4 1 B> 2 1 S --> 0^inf 2 1 (11)^3a+4 <A 0 1 S --> 0^inf 2 1 <A (22)^3a+4 0 1 S --> 0^inf 1 D> 2 (22)^3a+5 0 1 S by rule 15 --> 0^inf (11)^3a+6 D> 0 1 S --> 0^inf (11)^3a+6 1 A> 1 S --> 0^inf (11)^3a+6 1 <B 2 S --> 0^inf 1 <B (22)^3a+6 2 S --> 0^inf <A (22)^3a+7 S --> 0^inf 1 B> (22)^3a+7 S --> 0^inf 1 <A 0 2 (22)^3a+6 S --> 0^inf <B 2 0 2 (22)^3a+6 S --> 0^inf <C 2 2 0 2 (22)^3a+6 S --> 0^inf 2 D> 2 2 0 (22)^3a+6 2 S --> 0^inf 2 (11)^1 D> 0 (22)^3a+6 2 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S 18. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^g_2(a) A> 2 S by: 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by rule 17 --> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 2 S by rule 10 = 0^inf 2 1 (11)^(3^(3a+7)-2) A> 2 S = 0^inf 2 1 (11)^g_2(a) A> 2 S 19. 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S by: 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^a <B 0 1^3 S --> 0^inf 2 1 <B (22)^a 0 1^3 S --> 0^inf 2 <A 2 (22)^a 0 1^3 S --> 0^inf <B 0 2 (22)^a 0 1^3 S --> 0^inf <C 2 0 2 (22)^a 0 1^3 S --> 0^inf 2 D> 2 0 2 (22)^a 0 1^3 S --> 0^inf 2 1 D> 0 (22)^a 2 0 1^3 S --> 0^inf 2 (11)^1 A> (22)^a 2 0 1^3 S --> 0^inf 2 (11)^3a+1 A> 2 0 1^3 S by rule 6 --> 0^inf 2 (11)^3a+1 <B 0 0 1^3 S --> 0^inf 2 <B (22)^3a+1 0 0 1^3 S --> 0^inf <A 0 (22)^3a+1 0 0 1^3 S --> 0^inf 1 B> 0 (22)^3a+1 0 0 1^3 S --> 0^inf 1 <C 2 (22)^3a+1 0 0 1^3 S --> 0^inf <C 1 2 (22)^3a+1 0 0 1^3 S --> 0^inf 2 D> 1 2 (22)^3a+1 0 0 1^3 S --> 0^inf 2 <D (22)^3a+2 0 0 1^3 S --> 0^inf 1 D> (22)^3a+2 0 0 1^3 S --> 0^inf 1 (11)^3a+2 D> 0 0 1^3 S --> 0^inf (11)^3a+3 A> 0 1^3 S --> 0^inf (11)^3a+3 1 B> 1^3 S Call this rule 19*** with: 0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S Continuing: --> 0^inf (11)^3a+3 1 <A 2 1^2 S --> 0^inf 1 <A (22)^3a+3 2 1^2 S --> 0^inf <B (22)^3a+4 1^2 S Call this rule 19** with: 0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S Continuing: --> 0^inf <C 2 (22)^3a+4 1^2 S --> 0^inf 2 D> 2 (22)^3a+4 1^2 S --> 0^inf 2 1 (11)^3a+4 D> 1^2 S --> 0^inf 2 1 (11)^3a+4 <D 2 1 S --> 0^inf 2 <D (22)^3a+5 1 S --> 0^inf 1 D> (22)^3a+5 1 S --> 0^inf 1 (11)^3a+5 D> 1 S Call this rule 19* with: 0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S Continuing: --> 0^inf 1 (11)^3a+5 <D 2 S --> 0^inf <D (22)^3a+6 S --> 0^inf 1 A> (22)^3a+6 S --> 0^inf 1 <B 0 2 (22)^3a+5 S --> 0^inf <A 2 0 2 (22)^3a+5 S --> 0^inf 1 B> 2 0 2 (22)^3a+5 S --> 0^inf 1 <A 0 0 2 (22)^3a+5 S --> 0^inf <B 2 0 0 (22)^3a+5 2 S --> 0^inf <C (22)^1 0 0 (22)^3a+5 2 S --> 0^inf 2 D> (22)^1 0 0 (22)^3a+5 2 S --> 0^inf 2 (11)^1 D> 0 0 (22)^3a+5 2 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S This rule can be rewritten as: 0^inf 2 1 (11)^a A> 2 1^b S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 1^b-3 S 20. 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S by: 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_2(a) A> 2 1^b-1 S by rule 18 --> 0^inf 2 1 (11)^1 A> 0 (22)^3*g_2(a)+5 2 1^b-4 S by rule 19 = 0^inf 2 1 (11)^1 A> 0 2^6*g_2(a)+11 1^b-4 S Modulus for rule 14: 6*g_2(a)+11 = 3(2*g_2(a)+3)+2 = 3k+2 3k+2 mod 3 = 2 --> 0^inf 2 1 (11)^(g_2)^(2*g_2(a)+3)(1) A> 0 (22)^1 1^b-4 S = 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S 21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S by repetition of rule 20 22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf by: 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^g_2(a) A> 2 1^2 2 0^inf by rule 18 --> 0^inf 1 (11)^3*g_2(a)+5 D> 2 0^inf by rule 19* --> 0^inf (11)^3*g_2(a)+6 D> 0^inf --> 0^inf (11)^3*g_2(a)+6 1 A> 0^inf --> 0^inf (11)^3*g_2(a)+7 B> 0^inf --> 0^inf (11)^3*g_2(a)+7 <C 2 0^inf --> 0^inf <C (11)^3*g_2(a)+7 2 0^inf --> 0^inf 2 D> (11)^3*g_2(a)+7 2 0^inf --> 0^inf 2 <D 2 1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 1 D> 2 1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf (11)^1 D> 1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf (11)^1 <D 2 (11)^3*g_2(a)+6 2 0^inf --> 0^inf <D 2^3 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 1 A> 2^3 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 1 <B 0 2^2 (11)^3*g_2(a)+6 2 0^inf --> 0^inf <A 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 1 B> 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 1 <A 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf <B 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf <C 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 2 D> 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf = 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf 23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by: 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 2 1 (11)^g_2(a) A> 2 1 2 0^inf by rule 18 --> 0^inf <B (22)^3*g_2(a)+4 2 0^inf by rule 19** --> 0^inf <C (22)^3*g_2(a)+5 0^inf --> 0^inf 2 D> (22)^3*g_2(a)+5 0^inf --> 0^inf 2 (11)^3*g_2(a)+5 D> 0^inf --> 0^inf 2 1 (11)^3*g_2(a)+5 A> 0^inf --> 0^inf 2 (11)^3*g_2(a)+6 B> 0^inf --> 0^inf 2 (11)^3*g_2(a)+6 <C 2 0^inf --> 0^inf 2 <C (11)^3*g_2(a)+6 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf 24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by: 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 2 1 (11)^g_2(a) A> 2 2 0^inf by rule 18 --> 0^inf (11)^3*g_2(a)+3 1 B> 2 0^inf by rule 19*** --> 0^inf (11)^3*g_2(a)+3 1 <A 0^inf --> 0^inf 1 <A (22)^3*g_2(a)+3 0^inf --> 0^inf <B 2 (22)^3*g_2(a)+3 0^inf --> 0^inf <C (22)^3*g_2(a)+4 0^inf --> 0^inf 2 D> (22)^3*g_2(a)+4 0^inf --> 0^inf 2 (11)^3*g_2(a)+4 D> 0^inf --> 0^inf 2 1 (11)^3*g_2(a)+4 A> 0^inf --> 0^inf 2 (11)^3*g_2(a)+5 B> 0^inf --> 0^inf 2 (11)^3*g_2(a)+5 <C 2 0^inf --> 0^inf 2 <C (11)^3*g_2(a)+5 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf 25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by: 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 2 1 (11)^g_2(a) A> 0^inf by rule 14 --> 0^inf 2 (11)^g_2(a)+1 B> 0^inf --> 0^inf 2 (11)^g_2(a)+1 <C 2 0^inf --> 0^inf 2 <C (11)^g_2(a)+1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
Functions
Note that
And
It follows that
Modulus of g_2^a(1): 1 is of the form 4k+1 g_2(n) = 3^(3n+7)-2 3^2k mod 4 = 1 3^2k+1 mod 4 = 3 g_2(4k+1) = 3^(3*(4k+1)+7)-2 = 3^(12k+10)-2 = 3^2m-2 3^2m mod 4 = 1 --> -2 3^2m - 2 mod 4 = 3 g_2(4k+1) mod 4 = 3 --> g_2(4k+1) = 4m+3 g_2(4k+3) = 3^(3*(4k+3)+7)-2 = 3^(12k+16)-2 = 3^2m-2 3^2m-2 mod 4 = 3 g_2(4k+1) mod 4 = 3 --> g_2(4k+3) = 4m+3 -->g_2^k(1) = 4m+3 -->g_2^k(1) mod 4 = 3
Let's have L(a, b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf * L(a, 4k+v) --> L(g_3^k(a), v) by rule 21 * L(a, 0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25 * L(a, 1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24 * L(a, 2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23 * L(a, 3) --> L(1, 6*g_2(a) + 12) by rule 22
Trajectory
S=0: 0^inf <A 0^inf S=1: 0^inf 1 B> 0^inf S=2: 0^inf 1 <C 2 0^inf S=3: 0^inf <C 1 2 0^inf S=4: 0^inf 2 D> 1 2 0^inf S=5: 0^inf 2 <D 2^2 0^inf S=6: 0^inf 1 D> 2^2 0^inf S=8: 0^inf 1^3 D> 0^inf S=9: 0^inf (11)^2 A> 0^inf S=10: 0^inf (11)^2 1 B> 0^inf S=11: 0^inf (11)^2 1 <C 2 0^inf S=16: 0^inf <C (11)^2 1 2 0^inf S=17: 0^inf 2 D> (11)^2 1 2 0^inf S=18: 0^inf 2 <D 2 (11)^2 2 0^inf S=19: 0^inf 1 D> 2 (11)^2 2 0^inf S=20: 0^inf (11)^1 D> (11)^2 2 0^inf S=21: 0^inf (11)^1 <D 2 1 (11)^1 2 0^inf S=23: 0^inf <D 2^3 1^3 2 0^inf S=24: 0^inf 1 A> 2^3 1^3 2 0^inf S=25: 0^inf 1 <B 0 2^2 1^3 2 0^inf S=26: 0^inf <A 2 0 2^2 1^3 2 0^inf S=27: 0^inf 1 B> 2 0 2^2 1^3 2 0^inf S=28: 0^inf 1 <A 0 0 2^2 1^3 2 0^inf S=29: 0^inf <B 2 0 0 2^2 1^3 2 0^inf S=30: 0^inf <C 2 2 0 0 2^2 1^3 2 0^inf S=31: 0^inf 2 D> 2^2 0 0 2^2 1^3 2 0^inf S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf = L(1, 3) after 34 steps
L(1, 3) --> by rule 22, which can be simplified to L(1, 354294)
-->
--> 0^inf 1 Z> 2 0^inf
Approximate Score