User:Polygon/Page for analyses: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Functions: Simplified g_1
Polygon (talk | contribs)
 
(32 intermediate revisions by the same user not shown)
Line 1: Line 1:
A page for analyses of individual machines.
A page for analyses of individual machines.
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}=
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}=
1. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024.
1. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in September 2025. This TM runs the shortest of Pavel's potential champions, achieving a score of about <math>10 \uparrow\uparrow 9.873987</math>.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
{| class="wikitable"
{| class="wikitable"
Line 218: Line 218:


={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}}=
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}}=
2. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024.
2. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM runs the longest of Pavel's potential champions and is - as of October 20th 2025 - the highest scoring BB(4,3) TM with score > <math>2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 7.92 \times 10^{28}</math>.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
{| class="wikitable"
{| class="wikitable"
Line 806: Line 806:


={{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}=
={{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}=
Currently work in progress
3. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM has rules which are based on the remainder of some value modulo 4, although it is quite unlucky that three of the four possible remainders lead to halting. The TM achieves a score of around <math>3 \uparrow\uparrow\uparrow 88574</math>.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
{| class="wikitable"
{| class="wikitable"
Line 932: Line 932:
--> 0^inf 2 (11)^3a+1 A> 2 0 2 (22)^b-1 S by rule 6
--> 0^inf 2 (11)^3a+1 A> 2 0 2 (22)^b-1 S by rule 6
--> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by rule 8
--> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by rule 8
= 0^inf 2 1 (11)^g_1(a) A> (22)^b-1 S


10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1(b,a) A> S
10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S
by repetition of rule 9
by repetition of rule 9
g_1(n,a) = 3 * g_1(n-1, a) + 4  
g_1(n) = 3n + 4  
g_1(0,a) = a


11. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S
11. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S
Line 975: Line 975:
--> 0^inf <A 2 0 2 (22)^a+2 S [+6a +23]
--> 0^inf <A 2 0 2 (22)^a+2 S [+6a +23]
--> 0^inf 1 B> 2 0 2 (22)^a+2 S [+6a +24]
--> 0^inf 1 B> 2 0 2 (22)^a+2 S [+6a +24]
--> 0^inf 1 <A 00 2 (22)^a+2 S [+6a +25]
--> 0^inf 1 <A 0 0 2 (22)^a+2 S [+6a +25]
--> 0^inf <B 2 0 0 2 (22)^a+2 S [+6a +26]
--> 0^inf <B 2 0 0 2 (22)^a+2 S [+6a +26]
--> 0^inf <C (22)^1 0 0 2 (22)^a+2 S [+6a +27]
--> 0^inf <C (22)^1 0 0 2 (22)^a+2 S [+6a +27]
Line 984: Line 984:
13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
by:
by:
0^inf 2 1 (11)^a A> 0 (22)^b/2 S
0^inf 2 1 (11)^a A> 0 2^b S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b/2-2 2 S by rule 11-2
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 2^b-3 S by rule 11-2
--> 0^inf 2 1 (11)^g_1(3a+6, 1) A> 0 (22)^b/2-2 2 S by rule 10
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 0 2^b-3 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 0 (22)^b/2-2 2 S
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 0 2^b-3 S
= 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
= 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S


Line 1,068: Line 1,068:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by rule 17
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by rule 17
--> 0^inf 2 1 (11)^g_1(3a+6,1) A> 2 S by rule 10
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 2 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 2 S
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 2 S
= 0^inf 2 1 (11)^g_2(a) A> 2 S
= 0^inf 2 1 (11)^g_2(a) A> 2 S
Line 1,096: Line 1,096:
--> 0^inf (11)^3a+3 A> 0 1^3 S
--> 0^inf (11)^3a+3 A> 0 1^3 S
--> 0^inf (11)^3a+3 1 B> 1^3 S
--> 0^inf (11)^3a+3 1 B> 1^3 S
Call this rule 19***
with:
0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S
Continuing:
--> 0^inf (11)^3a+3 1 <A 2 1^2 S
--> 0^inf (11)^3a+3 1 <A 2 1^2 S
--> 0^inf 1 <A (22)^3a+3 2 1^2 S
--> 0^inf 1 <A (22)^3a+3 2 1^2 S
--> 0^inf <B (22)^3a+4 1^2 S
--> 0^inf <B (22)^3a+4 1^2 S
Call this rule 19**
with:
0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S
Continuing:
--> 0^inf <C 2 (22)^3a+4 1^2 S
--> 0^inf <C 2 (22)^3a+4 1^2 S
--> 0^inf 2 D> 2 (22)^3a+4 1^2 S
--> 0^inf 2 D> 2 (22)^3a+4 1^2 S
Line 1,106: Line 1,114:
--> 0^inf 1 D> (22)^3a+5 1 S
--> 0^inf 1 D> (22)^3a+5 1 S
--> 0^inf 1 (11)^3a+5 D> 1 S
--> 0^inf 1 (11)^3a+5 D> 1 S
Call this rule 19*
with:
0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S
Continuing:
--> 0^inf 1 (11)^3a+5 <D 2 S
--> 0^inf 1 (11)^3a+5 <D 2 S
--> 0^inf <D (22)^3a+6 S
--> 0^inf <D (22)^3a+6 S
Line 1,135: Line 1,147:
21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S
21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S
by repetition of rule 20
by repetition of rule 20
22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^2 2 0^inf by rule 18
--> 0^inf 1 (11)^3*g_2(a)+5 D> 2 0^inf by rule 19*
--> 0^inf (11)^3*g_2(a)+6 D> 0^inf
--> 0^inf (11)^3*g_2(a)+6 1 A> 0^inf
--> 0^inf (11)^3*g_2(a)+7 B> 0^inf
--> 0^inf (11)^3*g_2(a)+7 <C 2 0^inf
--> 0^inf <C (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 D> (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <D 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 A> 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <B 0 2^2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 D> 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
= 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1 2 0^inf by rule 18
--> 0^inf <B (22)^3*g_2(a)+4 2 0^inf by rule 19**
--> 0^inf <C (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+5 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
by:
0^inf (11)^a A> 0 (22)^1 1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 2 0^inf by rule 18
--> 0^inf (11)^3*g_2(a)+3 1 B> 2 0^inf by rule 19***
--> 0^inf (11)^3*g_2(a)+3 1 <A 0^inf
--> 0^inf 1 <A (22)^3*g_2(a)+3 0^inf
--> 0^inf <B 2 (22)^3*g_2(a)+3 0^inf
--> 0^inf <C (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 (11)^3*g_2(a)+4 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+4 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+5 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 0^inf by rule 14
--> 0^inf 2 (11)^g_2(a)+1 B> 0^inf
--> 0^inf 2 (11)^g_2(a)+1 <C 2 0^inf
--> 0^inf 2 <C (11)^g_2(a)+1 2 0^inf
--> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
</pre>
</pre>
==Functions==
==Functions==
g_1(n) = 3n + 4
<math>g_1(n) = 3n + 4</math>


Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math>
Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math>


And 1 = 3^1 - 2
And <math>1 = 3^1 - 2</math>


It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math>
It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math>
Line 1,170: Line 1,250:
-->g_2^k(1) mod 4 = 3
-->g_2^k(1) mod 4 = 3
</pre>
</pre>
<pre>
Let's have L(a, b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf
* L(a, 4k+v) --> L(g_3^k(a), v) by rule 21
* L(a, 0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25
* L(a, 1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24
* L(a, 2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23
* L(a, 3) --> L(1, 6*g_2(a) + 12) by rule 22
</pre>
==Trajectory==
<pre>
S=0: 0^inf <A 0^inf
S=1: 0^inf 1 B> 0^inf
S=2: 0^inf 1 <C 2 0^inf
S=3: 0^inf <C 1 2 0^inf
S=4: 0^inf 2 D> 1 2 0^inf
S=5: 0^inf 2 <D 2^2 0^inf
S=6: 0^inf 1 D> 2^2 0^inf
S=8: 0^inf 1^3 D> 0^inf
S=9: 0^inf (11)^2 A> 0^inf
S=10: 0^inf (11)^2 1 B> 0^inf
S=11: 0^inf (11)^2 1 <C 2 0^inf
S=16: 0^inf <C (11)^2 1 2 0^inf
S=17: 0^inf 2 D> (11)^2 1 2 0^inf
S=18: 0^inf 2 <D 2 (11)^2 2 0^inf
S=19: 0^inf 1 D> 2 (11)^2 2 0^inf
S=20: 0^inf (11)^1 D> (11)^2 2 0^inf
S=21: 0^inf (11)^1 <D 2 1 (11)^1 2 0^inf
S=23: 0^inf <D 2^3 1^3 2 0^inf
S=24: 0^inf 1 A> 2^3 1^3 2 0^inf
S=25: 0^inf 1 <B 0 2^2 1^3 2 0^inf
S=26: 0^inf <A 2 0 2^2 1^3 2 0^inf
S=27: 0^inf 1 B> 2 0 2^2 1^3 2 0^inf
S=28: 0^inf 1 <A 0 0 2^2 1^3 2 0^inf
S=29: 0^inf <B 2 0 0 2^2 1^3 2 0^inf
S=30: 0^inf <C 2 2 0 0 2^2 1^3 2 0^inf
S=31: 0^inf 2 D> 2^2 0 0 2^2 1^3 2 0^inf
S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf
S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf
= L(1, 3) after 34 steps
</pre>
L(1, 3) --> <math>L(1, 6*g_2(1) + 12)</math> by rule 22, which can be simplified to L(1, 354294)
--> <math>L(g_3^{88573}(1), 2)</math>
<math>L(g_3^{88573}(1), 2)</math> --> 0^inf 1 Z> <math>(11)^{3 \times (g_2(g_3^{88573}(1)) +6}</math> 2 0^inf
<math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math>
==Approximate Score==
<math>g_2(n) = 3^{3n+7}-2</math>
<math>3^{n} < g_2(n) < 3^{3^{n}}</math>
<math>g_3(n) = g_2^{2 \times (g_2(n)) +3}(1)</math>
<math>(3 \uparrow)^{k} n < g_2^{k}(n) < (3 \uparrow)^{2k} n</math>
<math>(3 \uparrow)^{k} 1 < g_2^{k}(1) < (3 \uparrow)^{2k} 1</math>
<math>3 \uparrow\uparrow k < g_2^{k}(1) < 3 \uparrow\uparrow 2k</math>
<math>3 \uparrow\uparrow 2 \times g_2(n) +6 < g_3(n) < 3 \uparrow\uparrow 4 \times g_2(n) +12</math>
<math>3 \uparrow\uparrow 2 \times 3^{3 \uparrow\uparrow 2 \times g_2(n) +6} +6 < g_3^{2}(n)</math>
<math>3 \uparrow\uparrow 3 \uparrow\uparrow (2 \times g_2(n) +7) < g_3^{2}(n) < 3 \uparrow\uparrow 3 \uparrow\uparrow (4 \times g_2(n) +13)</math>
<math>(3 \uparrow\uparrow)^{k} (2 \times g_2(n) + 7) < g_3^{k}(n) < (3 \uparrow\uparrow)^{k} (5 \times g_2(n) + 13)</math>
<math>(3 \uparrow\uparrow)^{k} 118101 < g_3^{k}(1) < (3 \uparrow\uparrow)^{k} 295248</math>
<math>3 \uparrow\uparrow\uparrow k+1 < g_3^{k}(1) < 3 \uparrow\uparrow\uparrow k+2</math>
<math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math>
<math>3 \uparrow\uparrow\uparrow 88574 < \sigma < S < 3 \uparrow\uparrow\uparrow 88575</math>
</div>
</div>

Latest revision as of 18:23, 20 October 2025

A page for analyses of individual machines.

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch)

1. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in September 2025. This TM runs the shortest of Pavel's potential champions, achieving a score of about 109.873987.

Analysis
0 1 2
A 1RB 1RD 1LC
B 2LB 1RB 1LC
C 1RZ 1LA 1LD
D 2RB 2RA 2RD
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S 1 B> 0 S --> S <A 1^2 S [+4 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]

7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps]
by:
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
--> S (12)^a-1 2 A> (11)^b+2 S
--> S (12)^a-1 2 (12)^b+2 A> S

8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]
Obtained by repeating rule 7.

9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
by:
S (12)^a <D (11)^b 0^inf
--> S (12)^a D> (11)^b 0^inf
--> S (12)^a (21)^b D> 0^inf
--> S (12)^a (21)^b 2 B> 0^inf
--> S (12)^a (21)^b 2 <B 2 0^inf
--> S (12)^a (21)^b <C 1 2 0^inf
--> S (12)^a <C (11)^b 1 2 0^inf
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
--> S (12)^a-1 <D (11)^2b+3 0^inf

10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
Obtained by repeating rule 9.

11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps]
by:
S (11)^a <D (11)^b 0^inf
--> S (11)^a-1 1 2 A> (11)^b 0^inf
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> S (11)^a-1 <A (11)^b+2 0^inf
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf

12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps]
by:
S 1^a <A (11)^b 0^inf
--> S 1^a D> (11)^b 0^inf
--> S 1^a (21)^b D> 0^inf
--> S 1^a (21)^b 2 B> 0^inf
--> S 1^a (21)^b 2 <B 2 0^inf
--> S 1^a (21)^b <C 1 2 0^inf
--> S 1^a <C (11)^b 1 2 0^inf
--> 1^a-1 <A (11)^b+1 2 0^inf

Functions

Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf

  • Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
  • Rule 10: A(a, b, c) --> A(a,0,2b×c+2b×33) which becomes A(a,0,2b+1×33) if c = 3.
  • Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)

Further: let f(n)=2n+1×3

  • If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)
  • A(a, 0, c) --> A(a2,c+3,3)>A(a2,0,f(c+3)3)
  • A(2k + d, b, 3) --> A(d,fk(b),3)

Trajectory

S=0: 0^inf A> 0^inf
S=1: 0^inf 1 B> 0^inf
S=5: 0^inf <A (11)^1 0^inf
S=6: 0^inf 1 B> (11)^1 0^inf
S=8: 0^inf 1 (11)^1 B> 0^inf
S=9: 0^inf 1 (11)^1 <B 2 0^inf
S=10: 0^inf 1 (11)^1 B> 2 0^inf
S=11: 0^inf 1 (11)^1 <C 1 0^inf
S=12: 0^inf (11)^1 <A (11)^1 0^inf
S=21: 0^inf 1 <A (11)^2 2 0^inf by rule 12
S=22: 0^inf 1 D> (11)^2 2 0^inf
S=26: 0^inf 1 (21)^2 D> 2 0^inf
S=27: 0^inf 1 (21)^2 2 D> 0^inf
S=28: 0^inf 1 (21)^2 2^2 B> 0^inf
S=29: 0^inf 1 (21)^2 2^2 <B 2 0^inf
S=30: 0^inf 1 (21)^2 2 <C 1 2 0^inf
S=31: 0^inf 1 (21)^2 <D (11)^1 2 0^inf
S=32: 0^inf 1 (21)^1 2^2 A> (11)^1 2 0^inf
S=34: 0^inf 1 (21)^1 2^2 (12)^1 A> 2 0^inf
S=35: 0^inf 1 (21)^1 2^2 (12)^1 <C 1 0^inf
S=36: 0^inf 1 (21)^1 2^2 1 <D (11)^1 0^inf
S=37: 0^inf 1 (21)^1 2^3 A> (11)^1 0^inf
S=39: 0^inf (12)^2 2^2 (12)^1 A> 0^inf
S=46: 0^inf (12)^2 2^2 <A (11)^2 0^inf
S=47: 0^inf (12)^2 2 <C 1 (11)^2 0^inf
S=48: 0^inf (12)^2 <D (11)^3 0^inf
S=172: 0^inf (12)^1 <D (11)^9 0^inf by rule 9
S=716: 0^inf <D (11)^21 0^inf by rule 9
S=717: 0^inf 2 B> (11)^21 0^inf
S=759: 0^inf 2 (11)^21 B> 0^inf
S=760: 0^inf 2 (11)^21 <B 2 0^inf
S=761: 0^inf 2 (11)^21 B> 2 0^inf
S=762: 0^inf 2 (11)^21 <C 1 0^inf
S=763: 0^inf 2 (11)^20 1 <A (11)^1 0^inf
S=772: 0^inf 2 (11)^20 <A (11)^2 2 0^inf
S=773: 0^inf 2 (11)^20 D> (11)^2 2 0^inf
S=777: 0^inf 2 (11)^20 (21)^2 D> 2 0^inf
S=778: 0^inf 2 (11)^20 (21)^2 2 D> 0^inf
S=779: 0^inf 2 1 (11)^19 1 (21)^2 2^2 B> 0^inf
S=780: 0^inf 2 1 (11)^19 (12)^3 2 <B 2 0^inf
S=781: 0^inf 2 1 (11)^19 (12)^3 <C 1 2 0^inf
S=782: 0^inf 2 1 (11)^19 (12)^2 1 <D (11)^1 2 0^inf
S=783: 0^inf 2 1 (11)^19 (12)^2 2 A> (11)^1 2 0^inf
S=785: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 A> 2 0^inf
S=786: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 <C 1 0^inf
S=787: 0^inf 2 1 (11)^19 (12)^2 2 1 <D (11)^1 0^inf
S=788: 0^inf 2 1 (11)^19 (12)^2 2^2 A> (11)^1 0^inf
S=790: 0^inf 2 1 (11)^19 (12)^2 2^2 (12)^1 A> 0^inf
S=797: 0^inf 2 1 (11)^19 (12)^2 2^2 <A (11)^2 0^inf
S=798: 0^inf 2 1 (11)^19 (12)^2 2 <C 1 (11)^2 0^inf
S=799: 0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
= A(19, 2, 3)

A(19, 2, 3) --> A(1,f9(2),3)>A(1,0,f10(2)3)

Let m = f10(2)3

--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf

Final trajectory:
0^inf 2 1 (11)^1 <D (11)^m 0^inf
--> 0^inf 2 1 1 2 A> (11)^m 0^inf
--> 0^inf 2 1 (12)^m+1 A> 0^inf
--> 0^inf 2 1 <A (11)^m+2 0^inf
--> 0^inf 2 1 D> (11)^m+2 0^inf
--> 0^inf (21)^m+3 D> 0^inf
--> 0^inf (21)^m+3 2 B> 0^inf
--> 0^inf (21)^m+3 2 <B 2 0^inf
--> 0^inf (21)^m+3 <C (12)^1 0^inf
--> 0^inf <C (11)^m+3 (12)^1 0^inf
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
Score = 2m + 9

Approximate Score

Score calculated in HyperCalc:

(10^)^8 30,302,671.815163

Or in tetration: 10^^9.873987 (truncated)

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)

2. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM runs the longest of Pavel's potential champions and is - as of October 20th 2025 - the highest scoring BB(4,3) TM with score > 2227.92×1028.

Analysis
0 1 2
A 1RB 1RD 1LC
B 2LB 1RB 1LC
C 1RZ 1LA 1LD
D 0RB 2RA 2RD
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S A> 0^2 S --> S <A 1^2 S [+5 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
by:
S (12)^a A> 0^2 S
--> S (12)^a <A (11)^1 S
--> S <A (11)^a+1 S

7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
by:
S A> (11)^1 2^b S
--> S (12)^1 A> 2^b S
--> S (12)^1 <C 1 2^b-1 S
--> S 1 <D (11)^1 2^b-1 S
--> S 2 A> (11)^1 2^b-1 S
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps]
by repetition of rule 7

9. S D> 0^2 S --> S <B 2^2 S [+3 steps]

10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps]
by:
S 2 <D (11)^a 0^2 S
--> S 2 D> (11)^a 0^2 S
--> S 2 (21)^a D> 0^2 S
--> S 2 (21)^a <B 2^2 S
--> S 2 (21)^a B> 2^2 S
--> S 2 (21)^a <C 1 2 S
--> S 2 <C (11)^a 1 2 S
--> S <D (11)^a+1 2 S

11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps]
by:
S 2 <D (11)^a 2 0^2 S
--> S 2 D> (11)^a 2 0^2 S
--> S 2 (21)^a D> 2 0^2 S
--> S 2 (21)^a 2 D> 0^2 S
--> S 2 (21)^a 2 <B 2^2 S
--> S 2 (21)^a <C 1 2^2 S
--> S 2 <C (11)^a 1 2^2 S
--> S <D (11)^a+1 2^2 S

12. S  1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps]
by:
S 1^a <A (11)^b 0^2 S
--> S 1^a D> (11)^b 0^2 S
--> S 1^a (21)^b D> 0^2 S
--> S 1^a (21)^b <B 2^2 S
--> S 1^a (21)^b B> 2^2 S
--> S 1^a (21)^b <C 1 2 S
--> S 1^a <C (11)^b 1 2 S
--> S 1^a-1 <A (11)^b+1 2 S

13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps]
by:
S 1^a <A (11)^b 2 0^2 S
--> S 1^a D> (11)^b 2 0^2 S
--> S 1^a (21)^b D> 2 0^2 S
--> S 1^a (21)^b 2 D> 0^2 S
--> S 1^a (21)^b 2 <B 2^2 S
--> S 1^a (21)^b <C 1 2^2 S
--> S 1^a <C (11)^b 1 2^2 S
--> S 1^a-1 <A (11)^b+1 2^2 S

14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps]
by:
S (12)^a 1 <D (11)^b 0^2 S
--> S (12)^a 2 A> (11)^b 0^2 S
--> S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S

15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps]
by repetition of rule 14

16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps]
by:
S (12)^a 2 1 <D (11)^b 0^inf
--> S (12)^a 2^2 A> (11)^b 0^inf
--> S (12)^a 2^2 (12)^b A> 0^inf
--> S (12)^a 2^2 <A (11)^b+1 0^inf
--> S (12)^a 2 <C 1 (11)^b+1 0^inf
--> S (12)^a <D (11)^b+2 0^inf
--> S (12)^a-1 1 <D (11)^b+3 2 0^inf by rule 10
--> S (12)^a-1 2 A> (11)^b+3 2 0^inf
--> S (12)^a-1 2 (12)^b+3 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+3 <C 1 0^inf
--> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf

17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf
by:
S (12)^a 2 1 <D (11)^b 0^inf
--> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf by rule 16
--> S (12)^a-1 2 1 <D (11)^2b+5 0^inf by rule 15

18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf
by repetition of rule 17

---
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf
by:
S (12)^a 2 1 <D (11)^b 2 0^inf
--> S (12)^a 2^2 A> (11)^b 2 0^inf
--> S (12)^a 2^2 (12)^b A> 2 0^inf
--> S (12)^a 2^2 (12)^b <C 1 0^inf
--> S (12)^a 2^2 (12)^b-1 1 <D (11)^1 0^inf
--> S (12)^a 2^2 1 <D (11)^2b-1 0^inf by rule 15

20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf
by:
S (12)^a 1 <D (11)^b 2 0^inf
--> S (12)^a 2 A> (11)^b 2 0^inf
--> S (12)^a 2 (12)^b A> 2 0^inf
--> S (12)^a 2 (12)^b <C 1 0^inf
--> S (12)^a 2 (12)^b-1 1 <D (11)^1 0^inf
--> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15

21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf
by:
S (12)^a 2^2 1 <D (11)^b 0^inf
--> S (12)^a 2^3 A> (11)^b 0^inf
--> S (12)^a 2^3 (12)^b A> 0^inf
--> S (12)^a 2^3 <A (11)^b+1 0^inf
--> S (12)^a 2^2 <C 1 (11)^b+1 0^inf
--> S (12)^a 2 <D (11)^b+2 0^inf
--> S (12)^a <D (11)^b+3 2 0^inf by rule 10
--> S (12)^a-1 1 <D (11)^b+4 2^2 0^inf by rule 11
--> S (12)^a-1 2 A> (11)^b+4 2^2 0^inf
--> S (12)^a-1 2 (12)^b+4 A> 2^2 0^inf
--> S (12)^a-1 2 (12)^b+4 <C 1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20
--> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*5)-5 0^inf by rule 18
= S (12)^a-1 2^2 1 <D (11)^(2^(b+4)*3-5) 0^inf

22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf
by:
S 1 <D (11)^b 2^2 0^inf
--> S 2 A> (11)^b 2^2 0^inf
--> S 2 (12)^b A> 2^2 0^inf
--> S 2 (12)^b <C 1 2 0^inf
--> S 2 (12)^b-1 1 <D (11)^1 2 0^inf
--> S 2 (12)^b-1 2 1 <D (11)^1 0^inf by rule 20

23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
by:
S (11)^a 2^2 1 <D (11)^b 0^inf
--> S (11)^a 2^3 A> (11)^b 0^inf
--> S (11)^a 2^3 (12)^b A> 0^inf
--> S (11)^a 2^3 <A (11)^b+1 0^inf
--> S (11)^a 2^2 <C 1 (11)^b+1 0^inf
--> S (11)^a 2 <D (11)^b+2 0^inf
--> S (11)^a <D (11)^b+3 2 0^inf by rule 10
--> S (11)^a-1 1 2 A> (11)^b+3 2 0^inf
--> S (11)^a-1 (12)^b+4 A> 2 0^inf
--> S (11)^a-1 (12)^b+4 <C 1 0^inf
--> S (11)^a-1 (12)^b+3 1 <D (11)^1 0^inf
--> S (11)^a-1 1 <D (11)^2b+7 0^inf by rule 15
--> S (11)^a-1 2 A> (11)^2b+7 0^inf
--> S (11)^a-1 2 (12)^2b+7 A> 0^inf
--> S (11)^a-1 2 <A (11)^2b+8 0^inf
--> S (11)^a-1 <C 1 (11)^2b+8 0^inf
--> S (11)^a-2 1 <A (11)^2b+9 0^inf
--> S (11)^a-2 <A (11)^2b+10 2 0^inf by rule 12
--> S (11)^a-3 1 <A (11)^2b+11 2^2 0^inf by rule 13
--> S (11)^a-3 1 D> (11)^2b+11 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 D> 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 2^2 D> 0^inf
--> S (11)^a-3 1 (21)^2b+11 2^2 <B 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 2 <C 1 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf
= S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf
--> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf

24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 2^2 1 <D (11)^c 0^inf
--> 0^inf 2^3 A> (11)^c 0^inf
--> 0^inf 2^3 (12)^c A> 0^inf
--> 0^inf 2^3 <A (11)^c+1 0^inf
--> 0^inf 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 2 <D (11)^c+2 0^inf
--> 0^inf <D (11)^c+3 2 0^inf by rule 10
--> 0^inf B> (11)^c+3 2 0^inf
--> 0^inf (11)^c+3 B> 2 0^inf
--> 0^inf (11)^c+3 <C 1 0^inf
--> 0^inf (11)^c+2 1 <A (11)^1 0^inf
--> 0^inf (11)^c+2 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^c+1 1 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^c+1 1 D> (11)^3 2^2 0^inf
--> 0^inf (11)^c+1 1 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^c+1 1 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^c+1 1 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf

25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf (11)^2 2^2 1 <D (11)^c 0^inf
--> 0^inf (11)^2 2^3 A> (11)^c 0^inf
--> 0^inf (11)^2 2^3 (12)^c A> 0^inf
--> 0^inf (11)^2 2^3 <A (11)^c+1 0^inf
--> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf (11)^2 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 (12)^c+4 A> 2 0^inf
--> 0^inf (11)^1 (12)^c+4 <C 1 0^inf
--> 0^inf (11)^1 (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf (11)^1 1 <D (11)^2c+7 0^inf by rule 15
--> 0^inf (11)^1 2 A> (11)^2c+7 0^inf
--> 0^inf (11)^1 2 (12)^2c+7 A> 0^inf
--> 0^inf (11)^1 2 <A (11)^2c+8 0^inf
--> 0^inf (11)^1 <C 1 (11)^2c+8 0^inf
--> 0^inf 1 <A (11)^2c+9 0^inf
--> 0^inf <A (11)^2c+10 2 0^inf by rule 12
--> 0^inf 1 B> (11)^2c+10 2 0^inf
--> 0^inf 1 (11)^2c+10 B> 2 0^inf
--> 0^inf 1 (11)^2c+10 <C 1 0^inf
--> 0^inf (11)^2c+10 <A (11)^1 0^inf
--> 0^inf (11)^2c+9 1 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+9 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+9 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^2c+9 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf

26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 (11)^1 2^3 A> (11)^c 0^inf
--> 0^inf 1 (11)^1 2^3 (12)^c A> 0^inf
--> 0^inf 1 (11)^1 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 (11)^1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 (11)^1 2 <D (11)^c+2 0^inf
--> 0^inf 1 (11)^1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 2 (12)^c+3 A> 2 0^inf
--> 0^inf (11)^1 2 (12)^c+3 <C 1 0^inf
--> 0^inf (11)^1 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf (11)^1 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf (11)^1 2^2 A> (11)^2c+5 0^inf
--> 0^inf (11)^1 2^2 (12)^2c+5 A> 0^inf
--> 0^inf (11)^1 2^2 <A (11)^2c+6 0^inf
--> 0^inf (11)^1 2 <C 1 (11)^2c+6 0^inf
--> 0^inf (11)^1 <D (11)^2c+7 0^inf
--> 0^inf 1 2 A> (11)^2c+7 0^inf
--> 0^inf (12)^2c+8 A> 0^inf
--> 0^inf <A (11)^2c+9 0^inf
--> 0^inf 1 B> (11)^2c+9 0^inf
--> 0^inf 1 (11)^2c+9 B> 0^inf
--> 0^inf 1 (11)^2c+9 <B 2 0^inf
--> 0^inf 1 (11)^2c+9 B> 2 0^inf
--> 0^inf 1 (11)^2c+9 <C 1 0^inf
--> 0^inf 1 (11)^2c+8 1 <A (11)^1 0^inf
--> 0^inf 1 (11)^2c+8 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+8 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+8 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+8 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+8 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^2c+8 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf

27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 2^3 A> (11)^c 0^inf
--> 0^inf 1 2^3 (12)^c A> 0^inf
--> 0^inf 1 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 2 <D (11)^c+2 0^inf
--> 0^inf 1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf 2 A> (11)^c+3 2 0^inf
--> 0^inf 2 (12)^c+3 A> 2 0^inf
--> 0^inf 2 (12)^c+3 <C 1 0^inf
--> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf 2^2 A> (11)^2c+5 0^inf
--> 0^inf 2^2 (12)^2c+5 A> 0^inf
--> 0^inf 2^2 <A (11)^2c+6 0^inf
--> 0^inf 2 <C 1 (11)^2c+6 0^inf
--> 0^inf <D (11)^2c+7 0^inf
--> 0^inf B> (11)^2c+7 0^inf
--> 0^inf (11)^2c+7 B> 0^inf
--> 0^inf (11)^2c+7 <B 2 0^inf
--> 0^inf (11)^2c+7 B> 2 0^inf
--> 0^inf (11)^2c+7 <C 1 0^inf
--> 0^inf (11)^2c+6 1 <A (11)^1 0^inf
--> 0^inf (11)^2c+6 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+5 1 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+5 1 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+5 1 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 D> 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf

28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
by:
0^inf (11)^1 2^2 1 <D (11)^c 0^inf
--> 0^inf (11)^1 2^3 A> (11)^c 0^inf
--> 0^inf (11)^1 2^3 (12)^c A> 0^inf
--> 0^inf (11)^1 2^3 <A (11)^c+1 0^inf
--> 0^inf (11)^1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^1 2 <D (11)^c+2 0^inf
--> 0^inf (11)^1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (12)^c+4 A> 2 0^inf
--> 0^inf (12)^c+4 <C 1 0^inf
--> 0^inf (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf 1 <D (11)^2c+7 0^inf by rule 15
--> 0^inf 2 A> (11)^2c+7 0^inf
--> 0^inf 2 (12)^2c+7 A> 0^inf
--> 0^inf 2 <A (11)^2c+8 0^inf
--> 0^inf <C 1 (11)^2c+8 0^inf
--> 0^inf 1 Z> 1 (11)^2c+8 0^inf

Note: Rule 29 is not relevant to this TMs trajectory.
29. 0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 (11)^2 2^3 A> (11)^c 0^inf
--> 0^inf 1 (11)^2 2^3 (12)^c A> 0^inf
--> 0^inf 1 (11)^2 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf 1 (11)^2 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^2 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^2 2 (12)^c+3 A> 2 0^inf
--> 0^inf (11)^2 2 (12)^c+3 <C 1 0^inf
--> 0^inf (11)^2 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf (11)^2 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf (11)^2 2^2 A> (11)^2c+5 0^inf
--> 0^inf (11)^2 2^2 (12)^2c+5 A> 0^inf
--> 0^inf (11)^2 2^2 <A (11)^2c+6 0^inf
--> 0^inf (11)^2 2 <C 1 (11)^2c+6 0^inf
--> 0^inf (11)^2 <D (11)^2c+7 0^inf
--> 0^inf (11)^1 1 2 A> (11)^2c+7 0^inf
--> 0^inf (11)^1 (12)^2c+8 A> 0^inf
--> 0^inf (11)^1 <A (11)^2c+9 0^inf
--> 0^inf 1 <A (11)^2c+10 2 0^inf by rule 12
--> 0^inf <A (11)^2c+11 2^2 0^inf by rule 13
--> 0^inf 1 B> (11)^2c+11 2^2 0^inf
--> 0^inf 1 (11)^2c+11 B> 2^2 0^inf
--> 0^inf 1 (11)^2c+11 <C 1 2 0^inf
--> 0^inf (11)^2c+11 <A (11)^1 2 0^inf
--> 0^inf (11)^2c+10 1 <A (11)^2 2^2 0^inf by rule 13
--> 0^inf (11)^2c+10 1 D> (11)^2 2^2 0^inf
--> 0^inf (11)^2c+10 1 (21)^2 D> 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2^2 D> 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf

Functions

Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let f1(n)=2n+4×35

Let f2(a,b)=f12×f2(a1,b)+11(1), wheref2(0,b)=b

Rule 21 becomes:

  • D(a,b,c)>D(a,b1,2b+4×35)
  • D1(a,b,c)>D1(a,b1,2b+4×35)

Rule 23 becomes:

  • D(a,0,c)>D(a3,2c+11,1)
  • D1(a,0,c)>D1(a3,2c+11,1)

Rule 24 becomes:

  • D(0,0,c)>D(c+1,3,1)

Rule 25 becomes:

  • D(2,0,c)>D(2c+8,3,1)

Rule 26 becomes:

  • D1(1,0,c)>D1(2c+7,3,1)

Rule 27 becomes:

  • D1(0,0,c)>D(2c+5,3,1)

Rule 28 becomes:

  • D(1, 0, c) --> halt with score 4c + 18

Rule 29 becomes:

  • D1(2,0,c)>D(2c+10,2,1)

By repeating rule 21, a stronger rule can be constructed:

  • D(a,b,c)>D(a,0,f1b(c))
  • D1(a,b,c)>D1(a,0,f1b(c))

If a is greater than or equal to 3: D(a,0,c)>D(a3,2c+11,1)>D(a3,0,f12c+11(1)) =D(a3,0,f2(1,c))

  • D(a,0,c)>D(a3,0,f12c+11(1))

This rule can also be repeated, also note that f12c+11(1)=f2(1,c) and f12×f2(a,b)+11(1)=f2(a+1,b):

  • D(3k+d,0,c)>D(d,0,f2(k,c))
  • D1(3k+d,0,c)>D1(d,0,f2(k,c))

Trajectory

S=0: 0^inf A> 0^inf
S=5: 0^inf <A (11)^1 0^inf
S=6: 0^inf 1 B> (11)^1 0^inf
S=8: 0^inf 1 (11)^1 B> 0^inf
S=9: 0^inf 1 (11)^1 <B 2 0^inf
S=10: 0^inf 1 (11)^1 B> 2 0^inf
S=11: 0^inf 1 (11)^1 <C 1 0^inf
S=12: 0^inf (11)^1 <A (11)^1 0^inf
S=23: 0^inf 1 <A (11)^2 2 0^inf
S=38: 0^inf <A (11)^3 2^2 0^inf
S=39: 0^inf 1 B> (11)^3 2^2 0^inf
S=45: 0^inf 1 (11)^3 B> 2^2 0^inf
S=46: 0^inf 1 (11)^3 <C 1 2 0^inf
S=47: 0^inf (11)^3 <A (11)^1 2 0^inf
S=58: 0^inf 1 (11)^2 <A (11)^2 2^2 0^inf
S=59: 0^inf 1 (11)^2 D> (11)^2 2^2 0^inf
S=63: 0^inf 1 (11)^2 (21)^2 D> 2^2 0^inf
S=65: 0^inf 1 (11)^2 (21)^2 2^2 D> 0^inf
S=68: 0^inf 1 (11)^2 (21)^2 2^2 <B 2^2 0^inf
S=69: 0^inf 1 (11)^2 (21)^2 2 <C 1 2^2 0^inf
S=70: 0^inf (11)^2 (12)^2 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf
=0^inf (11)^2 (12)^2 2^2 1 <D (11)^1 0^inf
= D(2, 2, 1)
So, the TM starts in configuration D(2, 2, 1).

D(2, 2, 1) -->

D(2,0,f12(1))=D(2,0,f1(91))

e1=f1(91)=295×35

f_1(n) = 2^(n+4)*3 - 5
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1.
Next, 3k+1 mod 3 = 1
So f_1(n) mod 3 = 1
Thus f_1^a(n) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n)
Thus f_2(a,b) mod 3 = 1

D(2,0,e1)

-->D1(2e1+8,3,1)>D1(2e1+8,0,f12(91))

e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1

D1(2e1+8,0,f12(91))

--> D1(1,0,f2(2e1+73,f12(91)))

e2=f2(2e1+73,f12(91))

D1(1,0,e3)

e2mod3=1

--> D1(2e2+7,3,1)>D1(2e2+7,0,f12(91))

2e_3 + 7

Modulus: 2 + 7 --> 9 mod 3 = 0

--> D1(0,0,f2(2e2+73,f12(91)))

e3=f2(2e2+73,f12(91))


D1(0,0,e3)

--> D(2e3+5,3,1)>D(2e3+5,0,f12(91))

e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1

--> D(1,0,f2(2e3+43,f12(91)))

e4=f2(2e3+43,f12(91))


D(1,0,e4)

--> halts with score 4e4+18.

Approximate Score

4e4+18

e4=f2(2e3+43,f12(91))

e3=f2(2e2+73,f12(91))

e2=f2(e1+73,f12(91))

e1=295×35

f1(n)=2n+4×35

f2(a,b)=f12×f2(a1,b)+11(1), where f2(0,b)=b

  • f1(n):

2n+5<f1(n)<2n+6

(2)an+5<f1a(n)<(2)an+7

(2)a5<f1a(1)<(2)a8

2(a+2)<f1a(1)<2(a+3)

  • f2(a,b):

f2(a,b)=f12×f2(a1,b)+11(1), where f2(0,b)=b

2(2×f2(a1,b)+13)<f2(a,b)<2(2×f2(a1,b)+14)

(2)ab<f2(a,b)<(2)a+1b

222<e1<f12(91)<2222

(2)a(222)<f2(a,f12(91))<(2)a(2222)

2(a+3)<f2(a,f12(91))<2(a+4)

2(7.92×1028)<e2<2(7.93×1028)

22(7.92×1028)<e3<22(7.93×1028)

245<222(7.92×1028)<e4<σ<S<222(7.93×1028)

This score would make 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch) the new BB(4,3) champion.

1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD (bbch)

3. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM has rules which are based on the remainder of some value modulo 4, although it is quite unlucky that three of the four possible remainders lead to halting. The TM achieves a score of around 388574.

Analysis
0 1 2
A 1RB 2LB 0LB
B 2LC 2LA 0LA
C 2RD 1LC 1RZ
D 1RA 2LD 1RD
S is any tape configuration

1. S 1^a <C S --> S <C 1^a S [+a steps]
2. S 1^a <D S --> S <D 2^a S [+a steps]
3. S D> 2^a S --> S 1^a D> S [+a steps]

4. S (11)^a <A S --> S <A (22)^a S [+2a steps]
   S (11)^a <B S --> S <B (22)^a S [+2a steps]

5. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24 steps]
by:
0^inf 2 (11)^a A> (22)^b S
--> 0^inf 2 (11)^a <B 0 2 (22)^b-1 S [+1]
--> 0^inf 2 <B (22)^a 0 2 (22)^b-1 S [+2a +1]
--> 0^inf <A 0 (22)^a 0 2 (22)^b-1 S [+2a +2]
--> 0^inf 1 B> 0 (22)^a 0 2 (22)^b-1 S [+2a +3]
--> 0^inf 1 <C 2 (22)^a 0 2 (22)^b-1 S [+2a +4]
--> 0^inf <C 1 2 (22)^a 0 2 (22)^b-1 S [+2a +5]
--> 0^inf 2 D> 1 2 (22)^a 0 2 (22)^b-1 S [+2a +6]
--> 0^inf 2 <D (22)^a+1 0 2 (22)^b-1 S [+2a +7]
--> 0^inf 1 D> (22)^a+1 0 2 (22)^b-1 S [+2a +8]
--> 0^inf 1 (11)^a+1 D> 0 2 (22)^b-1 S [+4a +10]
--> 0^inf (11)^a+2 A> 2 (22)^b-1 S [+4a +11]
--> 0^inf (11)^a+2 <B 0 (22)^b-1 S [+4a +12]
--> 0^inf <B (22)^a+2 0 (22)^b-1 S [+6a +16]
--> 0^inf <C 2 (22)^a+2 0 (22)^b-1 S [+6a +17]
--> 0^inf 2 D> 2 (22)^a+2 0 (22)^b-1 S [+6a +18]
--> 0^inf 2 1 (11)^a+2 D> 0 (22)^b-1 S [+8a +23]
--> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24]

6. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3b A> S
by repetition of rule 5

7. 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28 steps]
by:
0^inf 2 (11)^a A> 0 (22)^b S
--> 0^inf 2 (11)^a 1 B> (22)^b S [+1]
--> 0^inf 2 1 (11)^a <A 0 2 (22)^b-1 S [+2]
--> 0^inf 2 1 <A (22)^a 0 2 (22)^b-1 S [+2a +2]
--> 0^inf 2 <B 2 (22)^a 0 2 (22)^b-1 S [+2a +3]
--> 0^inf <A 0 2 (22)^a 0 2 (22)^b-1 S [+2a +4]
--> 0^inf 1 B> 0 2 (22)^a 0 2 (22)^b-1 S [+2a +5]
--> 0^inf 1 <C (22)^a+1 0 2 (22)^b-1 S [+2a +6]
--> 0^inf <C 1 (22)^a+1 0 2 (22)^b-1 S [+2a +7]
--> 0^inf 2 D> 1 (22)^a+1 0 2 (22)^b-1 S [+2a +8]
--> 0^inf 2 <D 2 (22)^a+1 0 2 (22)^b-1 S [+2a +9]
--> 0^inf 1 D> 2 (22)^a+1 0 2 (22)^b-1 S [+2a +10]
--> 0^inf (11)^a+2 D> 0 2 (22)^b-1 S [+4a +13]
--> 0^inf (11)^a+2 1 A> 2 (22)^b-1 S [+4a +14]
--> 0^inf (11)^a+2 1 <B 0 (22)^b-1 S [+4a +15]
--> 0^inf 1 <B (22)^a+2 0 (22)^b-1 S [+6a +19]
--> 0^inf <A 2 (22)^a+2 0 (22)^b-1 S [+6a +20]
--> 0^inf 1 B> 2 (22)^a+2 0 (22)^b-1 S [+6a +21]
--> 0^inf 1 <A 0 (22)^a+2 0 (22)^b-1 S [+6a +22]
--> 0^inf <B 2 0 (22)^a+2 0 (22)^b-1 S [+6a +23]
--> 0^inf <C 2 2 0 (22)^a+2 0 (22)^b-1 S [+6a +24]
--> 0^inf 2 D> (22)^1 0 (22)^a+2 0 (22)^b-1 S [+6a +25]
--> 0^inf 2 1 1 D> 0 (22)^a+2 0 (22)^b-1 S [+6a +27]
--> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28]

8. 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 1 (11)^a+3 A> S [+8a +27 steps]
by:
0^inf 2 (11)^a A> 2 0 2 S
--> 0^inf 2 (11)^a <B 0^2 2 S [+1]
--> 0^inf 2 <B (22)^a 0^2 2 S [+2a +1]
--> 0^inf <A 0 (22)^a 0^2 2 S [+2a +2]
--> 0^inf 1 B> 0 (22)^a 0^2 2 S [+2a +3]
--> 0^inf 1 <C 2 (22)^a 0^2 2 S [+2a +4]
--> 0^inf <C 1 2 (22)^a 0^2 2 S [+2a +5]
--> 0^inf 2 D> 1 2 (22)^a 0^2 2 S [+2a +6]
--> 0^inf 2 <D (22)^a+1 0^2 2 S [+2a +7]
--> 0^inf 1 D> (22)^a+1 0^2 2 S [+2a +8]
--> 0^inf 1 (11)^a+1 D> 0^2 2 S [+4a +10]
--> 0^inf (11)^a+2 A> 0 2 S [+4a +11]
--> 0^inf (11)^a+2 1 B> 2 S [+4a +12]
--> 0^inf (11)^a+2 1 <A 0 S [+4a +13]
--> 0^inf 1 <A (22)^a+2 0 S [+6a +17]
--> 0^inf <B 2 (22)^a+2 0 S [+6a +18]
--> 0^inf <C (22)^a+3 0 S [+6a +19]
--> 0^inf 2 D> (22)^a+3 0 S [+6a +20]
--> 0^inf 2 (11)^a+3 D> 0 S [+8a +26]
--> 0^inf 2 1 (11)^a+3 A> S [+8a +27]

9. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S
by:
0^inf 2 1 (11)^a A> (22)^b S
--> 0^inf 2 1 (11)^a <B 0 2 (22)^b-1 S
--> 0^inf 2 1 <B (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 <A 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf <B 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf <C 2 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 D> 2 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 1 D> 0 2 (22)^a 0 (22)^b-1 2 S
--> 0^inf 2 (11)^1 A> (22)^a 2 0 (22)^b-1 2 S
--> 0^inf 2 (11)^3a+1 A> 2 0 2 (22)^b-1 S by rule 6
--> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by rule 8
= 0^inf 2 1 (11)^g_1(a) A> (22)^b-1 S

10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S
by repetition of rule 9
g_1(n) = 3n + 4 

11. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^b S
--> 0^inf 2 (11)^a+1 B> (22)^b S
--> 0^inf 2 (11)^a+1 <A 0 2 (22)^b-1 S
--> 0^inf 2 <A (22)^a+1 0 2 (22)^b-1 S
--> 0^inf <B 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf <C 2 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 D> 2 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 1 D> 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 (11)^1 A> (22)^a+1 0 (22)^b-1 2 S
--> 0^inf 2 (11)^3a+4 A> 0 (22)^b-1 2 S by rule 6
Call this rule 11-1
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S by rule 7
Call this rule 11-2

12. 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31 steps]
by:
0^inf 2 (11)^a A> 0 11 S
--> 0^inf 2 (11)^a 1 B> 11 S [+1]
--> 0^inf 2 (11)^a 1 <A 2 1 S [+2]
--> 0^inf 2 1 <A (22)^a 2 1 S [+2a +2]
--> 0^inf 2 <B (22)^a+1 1 S [+2a +3]
--> 0^inf <A 0 (22)^a+1 1 S [+2a +4]
--> 0^inf 1 B> 0 (22)^a+1 1 S [+2a +5]
--> 0^inf 1 <C 2 (22)^a+1 1 S [+2a +6]
--> 0^inf <C 1 2 (22)^a+1 1 S [+2a +7]
--> 0^inf 2 D> 1 2 (22)^a+1 1 S [+2a +8]
--> 0^inf 2 <D (22)^a+2 1 S [+2a +9]
--> 0^inf 1 D> (22)^a+2 1 S [+2a +10]
--> 0^inf 1 (11)^a+2 D> 1 S [+4a +14]
--> 0^inf 1 (11)^a+2 <D 2 S [+4a +15]
--> 0^inf <D (22)^a+3 S [+6a +20]
--> 0^inf 1 A> (22)^a+3 S [+6a +21]
--> 0^inf 1 <B 0 2 (22)^a+2 S [+6a +22]
--> 0^inf <A 2 0 2 (22)^a+2 S [+6a +23]
--> 0^inf 1 B> 2 0 2 (22)^a+2 S [+6a +24]
--> 0^inf 1 <A 0 0 2 (22)^a+2 S [+6a +25]
--> 0^inf <B 2 0 0 2 (22)^a+2 S [+6a +26]
--> 0^inf <C (22)^1 0 0 2 (22)^a+2 S [+6a +27]
--> 0^inf 2 D> (22)^1 0 0 2 (22)^a+2 S [+6a +28]
--> 0^inf 2 (11)^1 D> 0 0 2 (22)^a+2 S [+6a +30]
--> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31]

13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
by:
0^inf 2 1 (11)^a A> 0 2^b S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 2^b-3 S by rule 11-2
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 0 2^b-3 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 0 2^b-3 S
= 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S

14. 0^inf 2 1 (11)^a A> 0 2^3k+v S --> 0^inf 2 1 (11)^(g_2)^k(a) A> 0 2^v S
by repetition of rule 13

15. 0^inf 2 1 <A S --> 0^inf 1 D> 2^3 S [+8 steps]
by:
0^inf 2 1 <A S
--> 0^inf 2 <B 2 S
--> 0^inf <A 0 2 S
--> 0^inf 1 B> 0 2 S
--> 0^inf 1 <C 2 2 S
--> 0^inf <C 1 2^2 S
--> 0^inf 2 D> 1 2^2 S
--> 0^inf 2 <D 2^3 S
--> 0^inf 1 D> 2^3 S

16. 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 2 1 2 0^inf
--> 0^inf 2 (11)^a+1 B> 2 1 2 0^inf
--> 0^inf 2 (11)^a+1 <A 0 1 2 0^inf
--> 0^inf 2 <A (22)^a+1 0 1 2 0^inf
--> 0^inf <B 0 (22)^a+1 0 1 2 0^inf
--> 0^inf <C 2 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 D> 2 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 1 D> 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 (11)^1 A> (22)^a+1 0 1 2 0^inf
--> 0^inf 2 (11)^3a+4 A> 0 1 2 0^inf by rule 6
--> 0^inf 2 (11)^3a+4 1 B> 1 2 0^inf
--> 0^inf 2 (11)^3a+4 1 <A (22)^1 0^inf
--> 0^inf 2 1 <A (22)^3a+5 0^inf
--> 0^inf 1 D> 2 (22)^3a+6 0^inf by rule 15
--> 0^inf (11)^3a+7 D> 0^inf
--> 0^inf (11)^3a+7 1 A> 0^inf
--> 0^inf (11)^3a+8 B> 0^inf
--> 0^inf (11)^3a+8 <C 2 0^inf
--> 0^inf <C (11)^3a+8 2 0^inf
--> 0^inf 2 D> (11)^3a+8 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3a+7 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3a+7 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3a+7 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3a+7 2 0^inf
--> 0^inf <D 2^3 (11)^3a+7 2 0^inf
--> 0^inf 1 A> (22)^1 2 (11)^3a+7 2 0^inf
--> 0^inf 1 <B 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 D> 2^2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf

17. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 (11)^3a+4 A> 0 2 1 S by rule 11-1
--> 0^inf 2 (11)^3a+4 1 B> 2 1 S
--> 0^inf 2 1 (11)^3a+4 <A 0 1 S
--> 0^inf 2 1 <A (22)^3a+4 0 1 S
--> 0^inf 1 D> 2 (22)^3a+5 0 1 S by rule 15
--> 0^inf (11)^3a+6 D> 0 1 S
--> 0^inf (11)^3a+6 1 A> 1 S
--> 0^inf (11)^3a+6 1 <B 2 S
--> 0^inf 1 <B (22)^3a+6 2 S
--> 0^inf <A (22)^3a+7 S
--> 0^inf 1 B> (22)^3a+7 S
--> 0^inf 1 <A 0 2 (22)^3a+6 S
--> 0^inf <B 2 0 2 (22)^3a+6 S
--> 0^inf <C 2 2 0 2 (22)^3a+6 S
--> 0^inf 2 D> 2 2 0 (22)^3a+6 2 S
--> 0^inf 2 (11)^1 D> 0 (22)^3a+6 2 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S

18. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^g_2(a) A> 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by rule 17
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 2 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 2 S
= 0^inf 2 1 (11)^g_2(a) A> 2 S

19. 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
by:
0^inf 2 1 (11)^a A> 2 1^3 S
--> 0^inf 2 1 (11)^a <B 0 1^3 S
--> 0^inf 2 1 <B (22)^a 0 1^3 S
--> 0^inf 2 <A 2 (22)^a 0 1^3 S
--> 0^inf <B 0 2 (22)^a 0 1^3 S
--> 0^inf <C 2 0 2 (22)^a 0 1^3 S
--> 0^inf 2 D> 2 0 2 (22)^a 0 1^3 S
--> 0^inf 2 1 D> 0 (22)^a 2 0 1^3 S
--> 0^inf 2 (11)^1 A> (22)^a 2 0 1^3 S
--> 0^inf 2 (11)^3a+1 A> 2 0 1^3 S by rule 6
--> 0^inf 2 (11)^3a+1 <B 0 0 1^3 S
--> 0^inf 2 <B (22)^3a+1 0 0 1^3 S
--> 0^inf <A 0 (22)^3a+1 0 0 1^3 S
--> 0^inf 1 B> 0 (22)^3a+1 0 0 1^3 S
--> 0^inf 1 <C 2 (22)^3a+1 0 0 1^3 S
--> 0^inf <C 1 2 (22)^3a+1 0 0 1^3 S
--> 0^inf 2 D> 1 2 (22)^3a+1 0 0 1^3 S
--> 0^inf 2 <D (22)^3a+2 0 0 1^3 S
--> 0^inf 1 D> (22)^3a+2 0 0 1^3 S
--> 0^inf 1 (11)^3a+2 D> 0 0 1^3 S
--> 0^inf (11)^3a+3 A> 0 1^3 S
--> 0^inf (11)^3a+3 1 B> 1^3 S
Call this rule 19***
with:
0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S
Continuing:
--> 0^inf (11)^3a+3 1 <A 2 1^2 S
--> 0^inf 1 <A (22)^3a+3 2 1^2 S
--> 0^inf <B (22)^3a+4 1^2 S
Call this rule 19**
with:
0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S
Continuing:
--> 0^inf <C 2 (22)^3a+4 1^2 S
--> 0^inf 2 D> 2 (22)^3a+4 1^2 S
--> 0^inf 2 1 (11)^3a+4 D> 1^2 S
--> 0^inf 2 1 (11)^3a+4 <D 2 1 S
--> 0^inf 2 <D (22)^3a+5 1 S
--> 0^inf 1 D> (22)^3a+5 1 S
--> 0^inf 1 (11)^3a+5 D> 1 S
Call this rule 19*
with:
0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S
Continuing:
--> 0^inf 1 (11)^3a+5 <D 2 S
--> 0^inf <D (22)^3a+6 S
--> 0^inf 1 A> (22)^3a+6 S
--> 0^inf 1 <B 0 2 (22)^3a+5 S
--> 0^inf <A 2 0 2 (22)^3a+5 S
--> 0^inf 1 B> 2 0 2 (22)^3a+5 S
--> 0^inf 1 <A 0 0 2 (22)^3a+5 S
--> 0^inf <B 2 0 0 (22)^3a+5 2 S
--> 0^inf <C (22)^1 0 0 (22)^3a+5 2 S
--> 0^inf 2 D> (22)^1 0 0 (22)^3a+5 2 S
--> 0^inf 2 (11)^1 D> 0 0 (22)^3a+5 2 S
--> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
This rule can be rewritten as:
0^inf 2 1 (11)^a A> 2 1^b S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 1^b-3 S

20. 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^b S
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^b-1 S by rule 18
--> 0^inf 2 1 (11)^1 A> 0 (22)^3*g_2(a)+5 2 1^b-4 S by rule 19
= 0^inf 2 1 (11)^1 A> 0 2^6*g_2(a)+11 1^b-4 S
Modulus for rule 14:
6*g_2(a)+11 = 3(2*g_2(a)+3)+2 = 3k+2
3k+2 mod 3 = 2
--> 0^inf 2 1 (11)^(g_2)^(2*g_2(a)+3)(1) A> 0 (22)^1 1^b-4 S
= 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S

21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S
by repetition of rule 20

22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^2 2 0^inf by rule 18
--> 0^inf 1 (11)^3*g_2(a)+5 D> 2 0^inf by rule 19*
--> 0^inf (11)^3*g_2(a)+6 D> 0^inf
--> 0^inf (11)^3*g_2(a)+6 1 A> 0^inf
--> 0^inf (11)^3*g_2(a)+7 B> 0^inf
--> 0^inf (11)^3*g_2(a)+7 <C 2 0^inf
--> 0^inf <C (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 D> (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <D 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 A> 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <B 0 2^2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 D> 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
= 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf

23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1 2 0^inf by rule 18
--> 0^inf <B (22)^3*g_2(a)+4 2 0^inf by rule 19**
--> 0^inf <C (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+5 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf

24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
by:
0^inf (11)^a A> 0 (22)^1 1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 2 0^inf by rule 18
--> 0^inf (11)^3*g_2(a)+3 1 B> 2 0^inf by rule 19***
--> 0^inf (11)^3*g_2(a)+3 1 <A 0^inf
--> 0^inf 1 <A (22)^3*g_2(a)+3 0^inf
--> 0^inf <B 2 (22)^3*g_2(a)+3 0^inf
--> 0^inf <C (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 (11)^3*g_2(a)+4 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+4 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+5 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf

25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 0^inf by rule 14
--> 0^inf 2 (11)^g_2(a)+1 B> 0^inf
--> 0^inf 2 (11)^g_2(a)+1 <C 2 0^inf
--> 0^inf 2 <C (11)^g_2(a)+1 2 0^inf
--> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf

Functions

g1(n)=3n+4

Note that (3k2)×3+4=3k+12

And 1=312

It follows that g1n(1)=3n+12

g2(n)=33n+72

g3(n)=g22×(g2(n)+3)(1)

Modulus of g_2^a(1):

1 is of the form 4k+1
g_2(n) = 3^(3n+7)-2
3^2k mod 4 = 1
3^2k+1 mod 4 = 3

g_2(4k+1) = 3^(3*(4k+1)+7)-2 = 3^(12k+10)-2 = 3^2m-2
3^2m mod 4 = 1 --> -2
3^2m - 2 mod 4 = 3
g_2(4k+1) mod 4 = 3
--> g_2(4k+1) = 4m+3

g_2(4k+3) = 3^(3*(4k+3)+7)-2 = 3^(12k+16)-2 = 3^2m-2
3^2m-2 mod 4 = 3
g_2(4k+1) mod 4 = 3
--> g_2(4k+3) = 4m+3

-->g_2^k(1) = 4m+3
-->g_2^k(1) mod 4 = 3
Let's have L(a, b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf

* L(a, 4k+v) --> L(g_3^k(a), v) by rule 21
* L(a, 0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25
* L(a, 1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24
* L(a, 2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23
* L(a, 3) --> L(1, 6*g_2(a) + 12) by rule 22

Trajectory

S=0: 0^inf <A 0^inf
S=1: 0^inf 1 B> 0^inf
S=2: 0^inf 1 <C 2 0^inf
S=3: 0^inf <C 1 2 0^inf
S=4: 0^inf 2 D> 1 2 0^inf
S=5: 0^inf 2 <D 2^2 0^inf
S=6: 0^inf 1 D> 2^2 0^inf
S=8: 0^inf 1^3 D> 0^inf
S=9: 0^inf (11)^2 A> 0^inf
S=10: 0^inf (11)^2 1 B> 0^inf
S=11: 0^inf (11)^2 1 <C 2 0^inf
S=16: 0^inf <C (11)^2 1 2 0^inf
S=17: 0^inf 2 D> (11)^2 1 2 0^inf
S=18: 0^inf 2 <D 2 (11)^2 2 0^inf
S=19: 0^inf 1 D> 2 (11)^2 2 0^inf
S=20: 0^inf (11)^1 D> (11)^2 2 0^inf
S=21: 0^inf (11)^1 <D 2 1 (11)^1 2 0^inf
S=23: 0^inf <D 2^3 1^3 2 0^inf
S=24: 0^inf 1 A> 2^3 1^3 2 0^inf
S=25: 0^inf 1 <B 0 2^2 1^3 2 0^inf
S=26: 0^inf <A 2 0 2^2 1^3 2 0^inf
S=27: 0^inf 1 B> 2 0 2^2 1^3 2 0^inf
S=28: 0^inf 1 <A 0 0 2^2 1^3 2 0^inf
S=29: 0^inf <B 2 0 0 2^2 1^3 2 0^inf
S=30: 0^inf <C 2 2 0 0 2^2 1^3 2 0^inf
S=31: 0^inf 2 D> 2^2 0 0 2^2 1^3 2 0^inf
S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf
S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf
= L(1, 3) after 34 steps

L(1, 3) --> L(1,6*g2(1)+12) by rule 22, which can be simplified to L(1, 354294)

--> L(g388573(1),2)

L(g388573(1),2) --> 0^inf 1 Z> (11)3×(g2(g388573(1))+6 2 0^inf

σ=6×g2(g388573(1))+14

Approximate Score

g2(n)=33n+72

3n<g2(n)<33n

g3(n)=g22×(g2(n))+3(1)

(3)kn<g2k(n)<(3)2kn

(3)k1<g2k(1)<(3)2k1

3k<g2k(1)<32k

32×g2(n)+6<g3(n)<34×g2(n)+12

32×332×g2(n)+6+6<g32(n)

33(2×g2(n)+7)<g32(n)<33(4×g2(n)+13)

(3)k(2×g2(n)+7)<g3k(n)<(3)k(5×g2(n)+13)

(3)k118101<g3k(1)<(3)k295248

3k+1<g3k(1)<3k+2


σ=6×g2(g388573(1))+14

388574<σ<S<388575