1RB1RD1LC 2LB1RB1LC 1RZ1LA1LD 0RB2RA2RD: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Hexational, not pentational
Polygon (talk | contribs)
Analysis by Polygon: Added halting tape
 
(2 intermediate revisions by the same user not shown)
Line 52: Line 52:
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
</pre>
</pre>
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let <math>D(a, b, c)</math> = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf


Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let <math>D_1(a, b, c)</math> = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf


Let <math>f_1(n) = 2^{n+4} \times 3 -5</math>
Let <math>f_1(n) = 2^{n+4} \times 3 -5</math>
Line 61: Line 61:


Rule 21 becomes:
Rule 21 becomes:
* <math>D(a, b, c)</math> --> <math>D(a, b-1, 2^{b+4} \times 3 -5)</math>
* <math>D(a, b, c) \rightarrow D(a, b-1, 2^{b+4} \times 3 -5)</math>
* <math>D_1(a, b, c)</math> --> <math>D_1(a, b-1, 2^{b+4} \times 3 -5)</math>
* <math>D_1(a, b, c) \rightarrow D_1(a, b-1, 2^{b+4} \times 3 -5)</math>


Rule 23 becomes:
Rule 23 becomes:
* D(a, 0, c) --> D(a-3, 2c+11, 1)
* <math>D(a, 0, c) \rightarrow D(a-3, 2c+11, 1)</math>
* D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)
* <math>D_1(a, 0, c) \rightarrow D_1(a-3, 2c+11, 1)</math>


Rule 24 becomes:
Rule 24 becomes:
* D(0, 0, c) --> D(c+1, 3, 1)
* <math>D(0, 0, c) \rightarrow D(c+1, 3, 1)</math>


Rule 25 becomes:
Rule 25 becomes:
* D(2, 0, c) --> D(2c+8, 3, 1)
* <math>D(2, 0, c) \rightarrow D(2c+8, 3, 1)</math>


Rule 26 becomes:
Rule 26 becomes:
* D_1(1, 0, c) --> D_1(2c+7, 3, 1)
* <math>D_1(1, 0, c) \rightarrow D_1(2c+7, 3, 1)</math>


Rule 27 becomes:
Rule 27 becomes:
* D_1(0, 0, c) --> D(2c+5, 3, 1)
* <math>D_1(0, 0, c) \rightarrow D(2c+5, 3, 1)</math>


Rule 28 becomes:
Rule 28 becomes:
* D(1, 0, c) --> halt with score 4c + 18
* <math>D(1, 0, c) \rightarrow \text {halt with score } 4c + 18</math>


By repeating rule 21, a stronger rule can be constructed:
By repeating rule 21, a stronger rule can be constructed:
* <math>D(a, b, c)</math> --> <math>D(a, 0, f_1^{b}(c))</math>
* <math>D(a, b, c) \rightarrow D(a, 0, f_1^{b}(c))</math>
* <math>D_1(a, b, c)</math> --> <math>D_1(a, 0, f_1^{b}(c))</math>
* <math>D_1(a, b, c) \rightarrow D_1(a, 0, f_1^{b}(c))</math>


If a is greater than or equal to 3:
If a is greater than or equal to 3:
<math>D(a, 0, c)</math> --> <math>D(a-3, 2c+11, 1)</math> --> <math>D(a-3, 0, f_1^{2c+11}(1))</math>
<math>D(a, 0, c) \rightarrow D(a-3, 2c+11, 1) \rightarrow D(a-3, 0, f_1^{2c+11}(1))</math>
=<math>D(a-3, 0, f_2(1,c))</math>
=<math>D(a-3, 0, f_2(1,c))</math>
* <math>D(a, 0, c)</math> --> <math>D(a-3, 0, f_1^{2c+11}(1))</math>
* <math>D(a, 0, c) \rightarrow D(a-3, 0, f_1^{2c+11}(1))</math>


This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>:
This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>:


* <math>D(3k+d, 0, c)</math> --> <math>D(d, 0, f_2(k, c))</math>
* <math>D(3k+d, 0, c) \rightarrow D(d, 0, f_2(k, c))</math>
* <math>D_1(3k+d, 0, c)</math> --> <math>D_1(d, 0, f_2(k, c))</math>
* <math>D_1(3k+d, 0, c) \rightarrow D_1(d, 0, f_2(k, c))</math>


The TM starts in configuration D(2, 2, 1).
The TM starts in configuration <math>D(2, 2, 1)</math>.


D(2, 2, 1) -->
<math>D(2, 2, 1) \rightarrow D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(91))</math>
 
<math>D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(91))</math>


<math>e_1 = f_1(91) = 2^{95} \times 3 -5</math>
<math>e_1 = f_1(91) = 2^{95} \times 3 -5</math>
Line 118: Line 116:
<math>D(2, 0, e_1)</math>
<math>D(2, 0, e_1)</math>


--><math>D_1(2e_1+8, 3, 1)</math> --> <math>D_1(2e_1+8, 0, f_1^{2}(91))</math>
<math> \rightarrow D_1(2e_1+8, 3, 1) \rightarrow D_1(2e_1+8, 0, f_1^{2}(91))</math>


e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
<math>e_1</math> mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1


<math>D_1(2e_1+8, 0, f_1^{2}(91))</math>
<math>D_1(2e_1+8, 0, f_1^{2}(91))</math>


--> <math>D_1(1,0,f_2(\frac{2e_1+7} 3, f_1^{2}(91)))</math>
<math> \rightarrow D_1(1,0,f_2(\frac{2e_1+7} 3, f_1^{2}(91)))</math>


<math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math>
<math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math>
Line 130: Line 128:
<math>D_1(1,0,e_3)</math>
<math>D_1(1,0,e_3)</math>


<math>e_2 mod 3 = 1</math>
<math>e_2</math> mod 3 = 1


--> <math>D_1(2e_2+7, 3, 1)</math> --> <math>D_1(2e_2+7, 0, f_1^{2}(91))</math>
<math> \rightarrow D_1(2e_2+7, 3, 1) \rightarrow D_1(2e_2+7, 0, f_1^{2}(91))</math>


2e_3 + 7
<math>2e_3 + 7</math>


Modulus: 2 + 7 --> 9 mod 3 = 0
Modulus: 2 + 7 --> 9 mod 3 = 0


--> <math>D_1(0, 0, f_2(\frac{2e_2+7} 3, f_1^{2}(91)))</math>
<math> \rightarrow D_1(0, 0, f_2(\frac{2e_2+7} 3, f_1^{2}(91)))</math>


<math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math>
<math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math>
Line 145: Line 143:
<math>D_1(0, 0, e_3)</math>
<math>D_1(0, 0, e_3)</math>


--> <math>D(2e_3+5, 3, 1)</math> --> <math>D(2e_3+5, 0, f_1^{2}(91))</math>
<math> \rightarrow D(2e_3+5, 3, 1) \rightarrow D(2e_3+5, 0, f_1^{2}(91))</math>


e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
<math>e_3</math> mod 3 = 1; 2*1 + 5 = 7 --> 7 mod 3 = 1


--> <math>D(1, 0, f_2(\frac{2e_3+4} 3, f_1^{2}(91)))</math>
<math> \rightarrow D(1, 0, f_2(\frac{2e_3+4} 3, f_1^{2}(91)))</math>


<math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math>
<math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math>
Line 157: Line 155:


--> halts with score <math>4e_4 + 18</math>.
--> halts with score <math>4e_4 + 18</math>.
<pre>
halting tape: 0^inf 1 Z> 1 (11)^(2e_4)+8 0^inf
</pre>


This can be bounded by:
This can be bounded by:

Latest revision as of 18:31, 20 October 2025

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch) is a hexational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over 245, possibly making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score.

Pavel listed the halting tape as:

1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19))

Analysis by Polygon

S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S A> 0^2 S --> S <A 1^2 S [+5 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]

7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps]

9. S D> 0^2 S --> S <B 2^2 S [+3 steps]

10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps]
11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps]

12. S  1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps]
13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps]

14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps]
15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps]

16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps]
17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf
18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf

19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf

20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf

21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf

22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf

23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf

Let D(a,b,c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let D1(a,b,c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let f1(n)=2n+4×35

Let f2(a,b)=f12×f2(a1,b)+11(1), wheref2(0,b)=b

Rule 21 becomes:

  • D(a,b,c)D(a,b1,2b+4×35)
  • D1(a,b,c)D1(a,b1,2b+4×35)

Rule 23 becomes:

  • D(a,0,c)D(a3,2c+11,1)
  • D1(a,0,c)D1(a3,2c+11,1)

Rule 24 becomes:

  • D(0,0,c)D(c+1,3,1)

Rule 25 becomes:

  • D(2,0,c)D(2c+8,3,1)

Rule 26 becomes:

  • D1(1,0,c)D1(2c+7,3,1)

Rule 27 becomes:

  • D1(0,0,c)D(2c+5,3,1)

Rule 28 becomes:

  • D(1,0,c)halt with score 4c+18

By repeating rule 21, a stronger rule can be constructed:

  • D(a,b,c)D(a,0,f1b(c))
  • D1(a,b,c)D1(a,0,f1b(c))

If a is greater than or equal to 3: D(a,0,c)D(a3,2c+11,1)D(a3,0,f12c+11(1)) =D(a3,0,f2(1,c))

  • D(a,0,c)D(a3,0,f12c+11(1))

This rule can also be repeated, also note that f12c+11(1)=f2(1,c) and f12×f2(a,b)+11(1)=f2(a+1,b):

  • D(3k+d,0,c)D(d,0,f2(k,c))
  • D1(3k+d,0,c)D1(d,0,f2(k,c))

The TM starts in configuration D(2,2,1).

D(2,2,1)D(2,0,f12(1))=D(2,0,f1(91))

e1=f1(91)=295×35

f_1(n) = 2^(n+4)*3 - 5
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1.
Next, 3k+1 mod 3 = 1
So f_1(n) mod 3 = 1
Thus f_1^a(n) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n)
Thus f_2(a,b) mod 3 = 1

D(2,0,e1)

D1(2e1+8,3,1)D1(2e1+8,0,f12(91))

e1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1

D1(2e1+8,0,f12(91))

D1(1,0,f2(2e1+73,f12(91)))

e2=f2(2e1+73,f12(91))

D1(1,0,e3)

e2 mod 3 = 1

D1(2e2+7,3,1)D1(2e2+7,0,f12(91))

2e3+7

Modulus: 2 + 7 --> 9 mod 3 = 0

D1(0,0,f2(2e2+73,f12(91)))

e3=f2(2e2+73,f12(91))


D1(0,0,e3)

D(2e3+5,3,1)D(2e3+5,0,f12(91))

e3 mod 3 = 1; 2*1 + 5 = 7 --> 7 mod 3 = 1

D(1,0,f2(2e3+43,f12(91)))

e4=f2(2e3+43,f12(91))


D(1,0,e4)

--> halts with score 4e4+18.

halting tape: 0^inf 1 Z> 1 (11)^(2e_4)+8 0^inf

This can be bounded by:

245<222(7.92×1028)<e4<σ<S<222(7.93×1028)