User:Polygon/Page for analyses: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Moved content from User:Polygon/Page for testing to a separate page
 
Polygon (talk | contribs)
 
(153 intermediate revisions by the same user not shown)
Line 1: Line 1:
A page for analyses of individual machines.
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}=
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}=
<div class="toccolours mw-collapsible mw-collapsed">'''Details'''<div class="mw-collapsible-content">
1. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in September 2025. This TM runs the shortest of Pavel's potential champions, achieving a score of about <math>10 \uparrow\uparrow 9.873987</math>.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 42: Line 44:
by:
by:
S (12)^a 2 (12)^b A> 0^2 S
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 (12)^b 1 B> 0 S
--> S (12)^a 2 (12)^b <A (11) S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
Line 51: Line 51:


8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]
Obtained by repeating rule 8.
Obtained by repeating rule 7.


9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
Line 105: Line 105:
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps]
by:
S 1^a <A (11)^b 0^inf
--> S 1^a D> (11)^b 0^inf
--> S 1^a (21)^b D> 0^inf
--> S 1^a (21)^b 2 B> 0^inf
--> S 1^a (21)^b 2 <B 2 0^inf
--> S 1^a (21)^b <C 1 2 0^inf
--> S 1^a <C (11)^b 1 2 0^inf
--> 1^a-1 <A (11)^b+1 2 0^inf
</pre>
</pre>
==Functions==
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
Line 118: Line 127:


Further: let <math>f(n) = 2^{n+1} \times 3</math>
Further: let <math>f(n) = 2^{n+1} \times 3</math>
* If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)
* If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)


* A(2k + d, 0, c) --> <math>A(d, f^{k-1}(c+3), 3)</math>
* A(a, 0, c) --> <math>A(a-2, c+3, 3)</math> --> <math>A(a-2, 0, f(c+3)-3)</math>
 
* A(2k + d, b, 3) --> <math>A(d, f^{k}(b), 3)</math>
 
==Trajectory==
<pre>
<pre>
The TM enters configuration A(19, 2, 3) after 799 steps with tape:
S=0: 0^inf A> 0^inf
0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
S=1: 0^inf 1 B> 0^inf
S=5: 0^inf <A (11)^1 0^inf
S=6: 0^inf 1 B> (11)^1 0^inf
S=8: 0^inf 1 (11)^1 B> 0^inf
S=9: 0^inf 1 (11)^1 <B 2 0^inf
S=10: 0^inf 1 (11)^1 B> 2 0^inf
S=11: 0^inf 1 (11)^1 <C 1 0^inf
S=12: 0^inf (11)^1 <A (11)^1 0^inf
S=21: 0^inf 1 <A (11)^2 2 0^inf by rule 12
S=22: 0^inf 1 D> (11)^2 2 0^inf
S=26: 0^inf 1 (21)^2 D> 2 0^inf
S=27: 0^inf 1 (21)^2 2 D> 0^inf
S=28: 0^inf 1 (21)^2 2^2 B> 0^inf
S=29: 0^inf 1 (21)^2 2^2 <B 2 0^inf
S=30: 0^inf 1 (21)^2 2 <C 1 2 0^inf
S=31: 0^inf 1 (21)^2 <D (11)^1 2 0^inf
S=32: 0^inf 1 (21)^1 2^2 A> (11)^1 2 0^inf
S=34: 0^inf 1 (21)^1 2^2 (12)^1 A> 2 0^inf
S=35: 0^inf 1 (21)^1 2^2 (12)^1 <C 1 0^inf
S=36: 0^inf 1 (21)^1 2^2 1 <D (11)^1 0^inf
S=37: 0^inf 1 (21)^1 2^3 A> (11)^1 0^inf
S=39: 0^inf (12)^2 2^2 (12)^1 A> 0^inf
S=46: 0^inf (12)^2 2^2 <A (11)^2 0^inf
S=47: 0^inf (12)^2 2 <C 1 (11)^2 0^inf
S=48: 0^inf (12)^2 <D (11)^3 0^inf
S=172: 0^inf (12)^1 <D (11)^9 0^inf by rule 9
S=716: 0^inf <D (11)^21 0^inf by rule 9
S=717: 0^inf 2 B> (11)^21 0^inf
S=759: 0^inf 2 (11)^21 B> 0^inf
S=760: 0^inf 2 (11)^21 <B 2 0^inf
S=761: 0^inf 2 (11)^21 B> 2 0^inf
S=762: 0^inf 2 (11)^21 <C 1 0^inf
S=763: 0^inf 2 (11)^20 1 <A (11)^1 0^inf
S=772: 0^inf 2 (11)^20 <A (11)^2 2 0^inf
S=773: 0^inf 2 (11)^20 D> (11)^2 2 0^inf
S=777: 0^inf 2 (11)^20 (21)^2 D> 2 0^inf
S=778: 0^inf 2 (11)^20 (21)^2 2 D> 0^inf
S=779: 0^inf 2 1 (11)^19 1 (21)^2 2^2 B> 0^inf
S=780: 0^inf 2 1 (11)^19 (12)^3 2 <B 2 0^inf
S=781: 0^inf 2 1 (11)^19 (12)^3 <C 1 2 0^inf
S=782: 0^inf 2 1 (11)^19 (12)^2 1 <D (11)^1 2 0^inf
S=783: 0^inf 2 1 (11)^19 (12)^2 2 A> (11)^1 2 0^inf
S=785: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 A> 2 0^inf
S=786: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 <C 1 0^inf
S=787: 0^inf 2 1 (11)^19 (12)^2 2 1 <D (11)^1 0^inf
S=788: 0^inf 2 1 (11)^19 (12)^2 2^2 A> (11)^1 0^inf
S=790: 0^inf 2 1 (11)^19 (12)^2 2^2 (12)^1 A> 0^inf
S=797: 0^inf 2 1 (11)^19 (12)^2 2^2 <A (11)^2 0^inf
S=798: 0^inf 2 1 (11)^19 (12)^2 2 <C 1 (11)^2 0^inf
S=799: 0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
= A(19, 2, 3)
</pre>
</pre>
==Trajectory==
A(19, 2, 3) --> <math>A(1, f^{9}(2), 3)</math> --> <math>A(1, 0, f^{10}(2)-3)</math>
A(19, 2, 3) --> A(19, 0, 21) --> <math>A(1, f^{8}(24), 3)</math>


--> <math>A(1, 0, f^{9}(24) - 3)</math>
Let m = <math>f^{10}(2)-3</math>


Let's have <math> f^{9}(24) - 3</math> = m.
--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf
<pre>
<pre>
Final trajectory:
Final trajectory:
Line 145: Line 207:
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
Score = 2m + 9
Score = 2m + 9
</pre>


==Approximate Score==
Score calculated in HyperCalc:
Score calculated in HyperCalc:
(10^)^8 30,302,671.815163
(10^)^8 30,302,671.815163
Or in tetration: 10^^10.873987 (truncated)
 
Or in tetration: 10^^9.873987 (truncated)
 
==Permutations==
'''Starting in state B'''
<pre>
0^inf <B 0^inf
--> translated cycler
</pre>
 
'''Starting in state C'''
<pre>
0^inf <C 0^inf
--> 0^inf 1 Z> 0^inf
</pre>
 
'''Starting in state D'''
<pre>
0^inf <D 0^inf
S=1: 0^inf 2 B> 0^inf
S=2: 0^inf 2 <B 2 0^inf
S=3: 0^inf <C 1 2 0^inf
S=4: 0^inf 1 Z> 1 2 0^inf
</pre>
</pre>
</div></div>
</div></div>


=1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD=
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}}=
<div class="toccolours mw-collapsible mw-collapsed">'''Details'''<div class="mw-collapsible-content">
2. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM runs the longest of Pavel's potential champions and is - as of October 20th 2025 - the highest scoring BB(4,3) TM with score > <math>2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 7.92 \times 10^{28}</math>.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 191: Line 279:
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
by:
S (12)^a A> 0^2 S
--> S (12)^a <A (11)^1 S
--> S <A (11)^a+1 S


7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
Line 260: Line 352:
by repetition of rule 14
by repetition of rule 14


16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf [+10b +26 steps]
16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps]
by:
by:
S (12)^a 2 1 <D (11)^b 0^inf
S (12)^a 2 1 <D (11)^b 0^inf
Line 268: Line 360:
--> S (12)^a 2 <C 1 (11)^b+1 0^inf
--> S (12)^a 2 <C 1 (11)^b+1 0^inf
--> S (12)^a <D (11)^b+2 0^inf
--> S (12)^a <D (11)^b+2 0^inf
--> S (12)^a-1 1 <D (11)^b+2 2 0^inf by rule 10
--> S (12)^a-1 1 <D (11)^b+3 2 0^inf by rule 10
--> S (12)^a-1 2 A> (11)^b+2 2 0^inf
--> S (12)^a-1 2 A> (11)^b+3 2 0^inf
--> S (12)^a-1 2 (12)^b+2 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+3 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+2 <C 1 0^inf
--> S (12)^a-1 2 (12)^b+3 <C 1 0^inf
--> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf
--> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf


17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+3 0^inf [+4a^2 +4ab +6b +22 steps]
17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf
by:
by:
S (12)^a 2 1 <D (11)^b 0^inf
S (12)^a 2 1 <D (11)^b 0^inf
--> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf
--> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf by rule 16
--> S (12)^a-1 2 1 <D (11)^2b+3 0^inf
--> S (12)^a-1 2 1 <D (11)^2b+5 0^inf by rule 15


18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*3-3 0^inf
18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf
by repetition of rule 17
by repetition of rule 17


---
---
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf
by:
by:
S (12)^a 2 1 <D (11)^b 2 0^inf
S (12)^a 2 1 <D (11)^b 2 0^inf
Line 302: Line 394:
--> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15
--> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15


21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+5)-3 0^inf
21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf
by:
by:
S (12)^a 2^2 1 <D (11)^b 0^inf
S (12)^a 2^2 1 <D (11)^b 0^inf
Line 317: Line 409:
--> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20
--> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20
--> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*3)-3 0^inf by rule 18
--> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*5)-5 0^inf by rule 18
= S (12)^a-1 2^2 1 <D (11)^(2^(b+5)-3) 0^inf
= S (12)^a-1 2^2 1 <D (11)^(2^(b+4)*3-5) 0^inf


22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf
22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf
Line 357: Line 449:
--> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf
= S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf
= S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf
--> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf
--> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
= S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf


Line 381: Line 473:
--> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
--> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
= 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf


Line 392: Line 484:
--> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf (11)^2 <D (11)^c+3 2 0^inf
--> 0^inf (11)^2 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 (12)^c+4 A> 2 0^inf
--> 0^inf (11)^1 (12)^c+4 A> 2 0^inf
Line 417: Line 509:
--> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
--> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
--> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
= 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf


26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
Line 455: Line 547:
--> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
= 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf


Line 471: Line 563:
--> 0^inf 2 (12)^c+3 <C 1 0^inf
--> 0^inf 2 (12)^c+3 <C 1 0^inf
--> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf 2 1 <D (11)^2c+5 0^inf
--> 0^inf 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf 2^2 A> (11)^2c+5 0^inf
--> 0^inf 2^2 A> (11)^2c+5 0^inf
--> 0^inf 2^2 (12)^2c+5 A> 0^inf
--> 0^inf 2^2 (12)^2c+5 A> 0^inf
Line 490: Line 582:
--> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf by rule 22
--> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
--> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
= 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf


Line 507: Line 599:
--> 0^inf (12)^c+4 <C 1 0^inf
--> 0^inf (12)^c+4 <C 1 0^inf
--> 0^inf (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf 1 <D (11)^2c+7 0^inf
--> 0^inf 1 <D (11)^2c+7 0^inf by rule 15
--> 0^inf 2 A> (11)^2c+7 0^inf
--> 0^inf 2 A> (11)^2c+7 0^inf
--> 0^inf 2 (12)^2c+7 A> 0^inf
--> 0^inf 2 (12)^2c+7 A> 0^inf
Line 513: Line 605:
--> 0^inf <C 1 (11)^2c+8 0^inf
--> 0^inf <C 1 (11)^2c+8 0^inf
--> 0^inf 1 Z> 1 (11)^2c+8 0^inf
--> 0^inf 1 Z> 1 (11)^2c+8 0^inf
Note: Rule 29 is not relevant to this TMs trajectory.
29. 0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 (11)^2 2^3 A> (11)^c 0^inf
--> 0^inf 1 (11)^2 2^3 (12)^c A> 0^inf
--> 0^inf 1 (11)^2 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf 1 (11)^2 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^2 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^2 2 (12)^c+3 A> 2 0^inf
--> 0^inf (11)^2 2 (12)^c+3 <C 1 0^inf
--> 0^inf (11)^2 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf (11)^2 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf (11)^2 2^2 A> (11)^2c+5 0^inf
--> 0^inf (11)^2 2^2 (12)^2c+5 A> 0^inf
--> 0^inf (11)^2 2^2 <A (11)^2c+6 0^inf
--> 0^inf (11)^2 2 <C 1 (11)^2c+6 0^inf
--> 0^inf (11)^2 <D (11)^2c+7 0^inf
--> 0^inf (11)^1 1 2 A> (11)^2c+7 0^inf
--> 0^inf (11)^1 (12)^2c+8 A> 0^inf
--> 0^inf (11)^1 <A (11)^2c+9 0^inf
--> 0^inf 1 <A (11)^2c+10 2 0^inf by rule 12
--> 0^inf <A (11)^2c+11 2^2 0^inf by rule 13
--> 0^inf 1 B> (11)^2c+11 2^2 0^inf
--> 0^inf 1 (11)^2c+11 B> 2^2 0^inf
--> 0^inf 1 (11)^2c+11 <C 1 2 0^inf
--> 0^inf (11)^2c+11 <A (11)^1 2 0^inf
--> 0^inf (11)^2c+10 1 <A (11)^2 2^2 0^inf by rule 13
--> 0^inf (11)^2c+10 1 D> (11)^2 2^2 0^inf
--> 0^inf (11)^2c+10 1 (21)^2 D> 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2^2 D> 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf
</pre>
</pre>
==Functions==
==Functions==
Line 519: Line 650:
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf


Let <math>f_1(n) = 2^{n+5}-3</math>
Let <math>f_1(n) = 2^{n+4} \times 3 -5</math>


Let <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math>
Let <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math>


Rule 21 becomes:
Rule 21 becomes:
* <math>D(a, b, c) --> D(a, b-1, 2^{b+5}-3)</math>
* <math>D(a, b, c) --> D(a, b-1, 2^{b+4} \times 3 -5)</math>
* <math>D_1(a, b, c) --> D_1(a, b-1, 2^{b+5}-3)</math>
* <math>D_1(a, b, c) --> D_1(a, b-1, 2^{b+4} \times 3 -5)</math>


Rule 23 becomes:
Rule 23 becomes:
Line 545: Line 676:
Rule 28 becomes:
Rule 28 becomes:
* D(1, 0, c) --> halt with score 4c + 18
* D(1, 0, c) --> halt with score 4c + 18
Rule 29 becomes:
* <math>D_1(2, 0, c) --> D(2c+10, 2, 1)</math>


By repeating rule 21, a stronger rule can be constructed:
By repeating rule 21, a stronger rule can be constructed:
Line 559: Line 693:
* <math>D(3k+d, 0, c) --> D(d, 0, f_2(k, c))</math>
* <math>D(3k+d, 0, c) --> D(d, 0, f_2(k, c))</math>
* <math>D_1(3k+d, 0, c) --> D_1(d, 0, f_2(k, c))</math>
* <math>D_1(3k+d, 0, c) --> D_1(d, 0, f_2(k, c))</math>
The trajectory of D_1(2, 0, c) is currently unexplored.


==Trajectory==
==Trajectory==
Line 592: Line 724:
D(2, 2, 1) -->
D(2, 2, 1) -->


<math>D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(61))</math>
<math>D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(91))</math>
 
<math>e_1 = f_1(61) = 2^{66}-3</math>


--><math>D_1(2e_1+8, 3, 1) --> D_1(2e_1+8, 0, f_1^{2}(61))</math>
<math>e_1 = f_1(91) = 2^{95} \times 3 -5</math>


<math>e_2 = 2^{67} +2</math>
<pre>
<pre>
2^67 +2 mod 3 = ?
f_1(n) = 2^(n+4)*3 - 5
2^2k mod 3 = 1
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1.
2^2k+1 mod 3 = 2
Next, 3k+1 mod 3 = 1
2^67 mod 3 = 2 --> +2 = 4; 4 mod 3 = 1
So f_1(n) mod 3 = 1
Thus f_1^a(n) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n)
Thus f_2(a,b) mod 3 = 1
</pre>
</pre>
<math>D_1(e_2, 0, f_1^{2}(61))</math>


--> <math>D_1(1,0,f_2(\frac{e_2-1} 3, f_1^{2}(61)))</math>
<math>D(2, 0, e_1)</math>


<math>e_3 = f_2(\frac{e_2-1} 3, f_1^{2}(61))</math>
--><math>D_1(2e_1+8, 3, 1) --> D_1(2e_1+8, 0, f_1^{2}(91))</math>
<pre>
 
f_1(2k+1) = 2^2k+6-3
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
Note that 2k+6 is of the form 2k, and that the whole expression is of the form 2k+1.
 
This means that any f_1^a(2k+1) = some f_1^a-1(2k+1)
<math>D_1(2e_1+8, 0, f_1^{2}(91))</math>
Now consider that 2^2k mod 3 = 1 and 2^2k+1 mod 3 = 2
 
f_1(2k+1) = 2^2k+6-3
--> <math>D_1(1,0,f_2(\frac{2e_1+7} 3, f_1^{2}(91)))</math>
Note that 2k + 6 is of the form 2k, meaning that 2^2k+6 mod 3 = 1
 
The -3 will not affect the Modulus here, as it is a full cycle back to 1.
<math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math>
Thus f_1(2k+1) mod 3 = 1, and, by earlier f_1^a(2k+1) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(2k+1)
Thus f_2(a,b) mod 3 = 1
</pre>


<math>D_1(1,0,e_3)</math>
<math>D_1(1,0,e_3)</math>


<math>e_3 mod 3 = 1</math>
<math>e_2 mod 3 = 1</math>


--> <math>D_1(2e_3+7, 3, 1) --> D_1(2e_3+7, 0, f_1^{2}(61))</math>
--> <math>D_1(2e_2+7, 3, 1) --> D_1(2e_2+7, 0, f_1^{2}(91))</math>


2e_3 + 7
2e_3 + 7
Line 634: Line 761:
Modulus: 2 + 7 --> 9 mod 3 = 0
Modulus: 2 + 7 --> 9 mod 3 = 0


--> <math>D_1(0, 0, f_2(\frac{2e_3+7} 3, f_1^{2}(61)))</math>
--> <math>D_1(0, 0, f_2(\frac{2e_2+7} 3, f_1^{2}(91)))</math>


<math>e_4 = f_2(\frac{2e_3+7} 3, f_1^2{2}(61))</math>
<math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math>




<math>D_1(0, 0, e_4)</math>
<math>D_1(0, 0, e_3)</math>


--> <math>D(2e_4+5, 3, 1) --> D(2e_4+5, 0, f_1^{2}(61))</math>
--> <math>D(2e_3+5, 3, 1) --> D(2e_3+5, 0, f_1^{2}(91))</math>


e_4 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1


--> <math>D(1, 0, f_2(\frac{2e_4+4} 3, f_1^{2}(61)))</math>
--> <math>D(1, 0, f_2(\frac{2e_3+4} 3, f_1^{2}(91)))</math>


<math>e_5 = f_2(\frac{2e_4+4} 3, f_1^{2}(61))</math>
<math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math>




<math>D(1, 0, e_5)</math>
<math>D(1, 0, e_4)</math>


--> halts with score <math>4e_5 + 18</math>.
--> halts with score <math>4e_4 + 18</math>.


==Approximate Score==
==Approximate Score==
<math>4e_5 + 18</math>
<math>4e_4 + 18</math>


<math>e_5 = f_2(\frac{2e_4+4} 3, f_1^{2}(61))</math>
<math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math>


<math>e_4 = f_2(\frac{2e_3+7} 3, f_1^{2}(61))</math>
<math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math>


<math>e_3 = f_2(\frac{e_2-1} 3, f_1^{2}(61))</math>
<math>e_2 = f_2(\frac{e_1+7} 3, f_1^{2}(91))</math>


<math>e_2 = 2^{67} +2</math>
<math>e_1 = 2^{95} \times 3 -5</math>


<math>f_1(n) = 2^{n+5}-3</math>
<math>f_1(n) = 2^{n+4} \times 3 -5</math>


<math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where <math>f_2(0, b) = b</math>
<math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where <math>f_2(0, b) = b</math>


* <math>f_1(n):</math>
* <math>f_1(n):</math>
<math>2^{n+4} < f_1(n) < 2^{n+5}</math>
<math>2^{n+5} < f_1(n) < 2^{n+6}</math>


<math>(2 \uparrow)^{a} n+4 < f_1^{a}(n) < (2 \uparrow)^{a} n+6</math>
<math>(2 \uparrow)^{a} n+5 < f_1^{a}(n) < (2 \uparrow)^{a} n+7</math>


<math>(2 \uparrow)^{a} 5 < f_1^{a}(1) < (2 \uparrow)^{a} 7</math>
<math>(2 \uparrow)^{a} 5 < f_1^{a}(1) < (2 \uparrow)^{a} 8</math>


<math>2 \uparrow\uparrow (a+2) < f_1^{a}(1) < 2 \uparrow\uparrow (a+3)</math>
<math>2 \uparrow\uparrow (a+2) < f_1^{a}(1) < 2 \uparrow\uparrow (a+3)</math>
Line 685: Line 812:
<math>(2 \uparrow\uparrow)^{a} b < f_2(a,b) < (2 \uparrow\uparrow)^{a+1} b</math>
<math>(2 \uparrow\uparrow)^{a} b < f_2(a,b) < (2 \uparrow\uparrow)^{a+1} b</math>


<math>2 \uparrow\uparrow 2 \uparrow\uparrow 2 < e_2 < f_1^{2}(61) < 2 \uparrow\uparrow 2 \uparrow\uparrow 2 \uparrow\uparrow 2</math>
<math>2 \uparrow\uparrow 2 \uparrow\uparrow 2 < e_1 < f_1^{2}(91) < 2 \uparrow\uparrow 2 \uparrow\uparrow 2 \uparrow\uparrow 2</math>


<math>(2 \uparrow\uparrow)^{a} (2 \uparrow\uparrow 2 \uparrow\uparrow 2) < f_2(a, f_1^{2}(61)) < (2 \uparrow\uparrow)^{a} (2 \uparrow\uparrow 2 \uparrow\uparrow 2 \uparrow\uparrow 2)</math>
<math>(2 \uparrow\uparrow)^{a} (2 \uparrow\uparrow 2 \uparrow\uparrow 2) < f_2(a, f_1^{2}(91)) < (2 \uparrow\uparrow)^{a} (2 \uparrow\uparrow 2 \uparrow\uparrow 2 \uparrow\uparrow 2)</math>


<math>2 \uparrow\uparrow\uparrow (a+3) < f_2(a, f_1^{2}(61)) < 2 \uparrow\uparrow\uparrow (a+4)</math>
<math>2 \uparrow\uparrow\uparrow (a+3) < f_2(a, f_1^{2}(91)) < 2 \uparrow\uparrow\uparrow (a+4)</math>


<math>2 \uparrow\uparrow\uparrow (4.91 \times 10^{19}) < e_3 < 2 \uparrow\uparrow\uparrow (4.92 \times 10^{19})</math>
<math>2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_2 < 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math>


<math>2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (4.91 \times 10^{19}) < e_4 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (4.92 \times 10^{19})</math>
<math>2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_3 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math>


<math>2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (4.91 \times 10^{19}) < e_5 < \sigma < S < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (4.92 \times 10^{19})</math>
<math>2 \uparrow^{4} 5 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_4 < \sigma < S < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math>


This score would make {{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}} the new [[BB(4,3)]] champion.
This score would make {{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}} the new [[BB(4,3)]] champion.
==Permutations==
'''Starting in state B'''
<pre>
0^inf <B 0^inf
--> 0^inf <B 2^k 0^inf
--> translated cycler
</pre>
'''Starting in state C'''
<pre>
0^inf <C 0^inf
-->0^inf 1 Z> 0^inf
</pre>
'''Starting in state D'''
<pre>
0^inf <D 0^inf
--> 0^inf <B 0^inf
--> translated cycler
</pre>
</div></div>
={{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}}=
3. One of the seven potential [[BB(4,3)]] champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM has rules which are based on the remainder of some value modulo 4, although it is quite unlucky that three of the four possible remainders lead to halting. The TM achieves a score of around <math>3 \uparrow\uparrow\uparrow 88574</math>.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
{| class="wikitable"
|+
!
!0
!1
!2
|-
|A
|1RB
|2LB
|0LB
|-
|B
|2LC
|2LA
|0LA
|-
|C
|2RD
|1LC
|1RZ
|-
|D
|1RA
|2LD
|1RD
|}
<pre>
S is any tape configuration
1. S 1^a <C S --> S <C 1^a S [+a steps]
2. S 1^a <D S --> S <D 2^a S [+a steps]
3. S D> 2^a S --> S 1^a D> S [+a steps]
4. S (11)^a <A S --> S <A (22)^a S [+2a steps]
  S (11)^a <B S --> S <B (22)^a S [+2a steps]
5. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24 steps]
by:
0^inf 2 (11)^a A> (22)^b S
--> 0^inf 2 (11)^a <B 0 2 (22)^b-1 S [+1]
--> 0^inf 2 <B (22)^a 0 2 (22)^b-1 S [+2a +1]
--> 0^inf <A 0 (22)^a 0 2 (22)^b-1 S [+2a +2]
--> 0^inf 1 B> 0 (22)^a 0 2 (22)^b-1 S [+2a +3]
--> 0^inf 1 <C 2 (22)^a 0 2 (22)^b-1 S [+2a +4]
--> 0^inf <C 1 2 (22)^a 0 2 (22)^b-1 S [+2a +5]
--> 0^inf 2 D> 1 2 (22)^a 0 2 (22)^b-1 S [+2a +6]
--> 0^inf 2 <D (22)^a+1 0 2 (22)^b-1 S [+2a +7]
--> 0^inf 1 D> (22)^a+1 0 2 (22)^b-1 S [+2a +8]
--> 0^inf 1 (11)^a+1 D> 0 2 (22)^b-1 S [+4a +10]
--> 0^inf (11)^a+2 A> 2 (22)^b-1 S [+4a +11]
--> 0^inf (11)^a+2 <B 0 (22)^b-1 S [+4a +12]
--> 0^inf <B (22)^a+2 0 (22)^b-1 S [+6a +16]
--> 0^inf <C 2 (22)^a+2 0 (22)^b-1 S [+6a +17]
--> 0^inf 2 D> 2 (22)^a+2 0 (22)^b-1 S [+6a +18]
--> 0^inf 2 1 (11)^a+2 D> 0 (22)^b-1 S [+8a +23]
--> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24]
6. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3b A> S
by repetition of rule 5
7. 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28 steps]
by:
0^inf 2 (11)^a A> 0 (22)^b S
--> 0^inf 2 (11)^a 1 B> (22)^b S [+1]
--> 0^inf 2 1 (11)^a <A 0 2 (22)^b-1 S [+2]
--> 0^inf 2 1 <A (22)^a 0 2 (22)^b-1 S [+2a +2]
--> 0^inf 2 <B 2 (22)^a 0 2 (22)^b-1 S [+2a +3]
--> 0^inf <A 0 2 (22)^a 0 2 (22)^b-1 S [+2a +4]
--> 0^inf 1 B> 0 2 (22)^a 0 2 (22)^b-1 S [+2a +5]
--> 0^inf 1 <C (22)^a+1 0 2 (22)^b-1 S [+2a +6]
--> 0^inf <C 1 (22)^a+1 0 2 (22)^b-1 S [+2a +7]
--> 0^inf 2 D> 1 (22)^a+1 0 2 (22)^b-1 S [+2a +8]
--> 0^inf 2 <D 2 (22)^a+1 0 2 (22)^b-1 S [+2a +9]
--> 0^inf 1 D> 2 (22)^a+1 0 2 (22)^b-1 S [+2a +10]
--> 0^inf (11)^a+2 D> 0 2 (22)^b-1 S [+4a +13]
--> 0^inf (11)^a+2 1 A> 2 (22)^b-1 S [+4a +14]
--> 0^inf (11)^a+2 1 <B 0 (22)^b-1 S [+4a +15]
--> 0^inf 1 <B (22)^a+2 0 (22)^b-1 S [+6a +19]
--> 0^inf <A 2 (22)^a+2 0 (22)^b-1 S [+6a +20]
--> 0^inf 1 B> 2 (22)^a+2 0 (22)^b-1 S [+6a +21]
--> 0^inf 1 <A 0 (22)^a+2 0 (22)^b-1 S [+6a +22]
--> 0^inf <B 2 0 (22)^a+2 0 (22)^b-1 S [+6a +23]
--> 0^inf <C 2 2 0 (22)^a+2 0 (22)^b-1 S [+6a +24]
--> 0^inf 2 D> (22)^1 0 (22)^a+2 0 (22)^b-1 S [+6a +25]
--> 0^inf 2 1 1 D> 0 (22)^a+2 0 (22)^b-1 S [+6a +27]
--> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28]
8. 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 1 (11)^a+3 A> S [+8a +27 steps]
by:
0^inf 2 (11)^a A> 2 0 2 S
--> 0^inf 2 (11)^a <B 0^2 2 S [+1]
--> 0^inf 2 <B (22)^a 0^2 2 S [+2a +1]
--> 0^inf <A 0 (22)^a 0^2 2 S [+2a +2]
--> 0^inf 1 B> 0 (22)^a 0^2 2 S [+2a +3]
--> 0^inf 1 <C 2 (22)^a 0^2 2 S [+2a +4]
--> 0^inf <C 1 2 (22)^a 0^2 2 S [+2a +5]
--> 0^inf 2 D> 1 2 (22)^a 0^2 2 S [+2a +6]
--> 0^inf 2 <D (22)^a+1 0^2 2 S [+2a +7]
--> 0^inf 1 D> (22)^a+1 0^2 2 S [+2a +8]
--> 0^inf 1 (11)^a+1 D> 0^2 2 S [+4a +10]
--> 0^inf (11)^a+2 A> 0 2 S [+4a +11]
--> 0^inf (11)^a+2 1 B> 2 S [+4a +12]
--> 0^inf (11)^a+2 1 <A 0 S [+4a +13]
--> 0^inf 1 <A (22)^a+2 0 S [+6a +17]
--> 0^inf <B 2 (22)^a+2 0 S [+6a +18]
--> 0^inf <C (22)^a+3 0 S [+6a +19]
--> 0^inf 2 D> (22)^a+3 0 S [+6a +20]
--> 0^inf 2 (11)^a+3 D> 0 S [+8a +26]
--> 0^inf 2 1 (11)^a+3 A> S [+8a +27]
9. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S
by:
0^inf 2 1 (11)^a A> (22)^b S
--> 0^inf 2 1 (11)^a <B 0 2 (22)^b-1 S
--> 0^inf 2 1 <B (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 <A 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf <B 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf <C 2 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 D> 2 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 1 D> 0 2 (22)^a 0 (22)^b-1 2 S
--> 0^inf 2 (11)^1 A> (22)^a 2 0 (22)^b-1 2 S
--> 0^inf 2 (11)^3a+1 A> 2 0 2 (22)^b-1 S by rule 6
--> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by rule 8
= 0^inf 2 1 (11)^g_1(a) A> (22)^b-1 S
10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S
by repetition of rule 9
g_1(n) = 3n + 4
11. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^b S
--> 0^inf 2 (11)^a+1 B> (22)^b S
--> 0^inf 2 (11)^a+1 <A 0 2 (22)^b-1 S
--> 0^inf 2 <A (22)^a+1 0 2 (22)^b-1 S
--> 0^inf <B 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf <C 2 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 D> 2 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 1 D> 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 (11)^1 A> (22)^a+1 0 (22)^b-1 2 S
--> 0^inf 2 (11)^3a+4 A> 0 (22)^b-1 2 S by rule 6
Call this rule 11-1
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S by rule 7
Call this rule 11-2
12. 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31 steps]
by:
0^inf 2 (11)^a A> 0 11 S
--> 0^inf 2 (11)^a 1 B> 11 S [+1]
--> 0^inf 2 (11)^a 1 <A 2 1 S [+2]
--> 0^inf 2 1 <A (22)^a 2 1 S [+2a +2]
--> 0^inf 2 <B (22)^a+1 1 S [+2a +3]
--> 0^inf <A 0 (22)^a+1 1 S [+2a +4]
--> 0^inf 1 B> 0 (22)^a+1 1 S [+2a +5]
--> 0^inf 1 <C 2 (22)^a+1 1 S [+2a +6]
--> 0^inf <C 1 2 (22)^a+1 1 S [+2a +7]
--> 0^inf 2 D> 1 2 (22)^a+1 1 S [+2a +8]
--> 0^inf 2 <D (22)^a+2 1 S [+2a +9]
--> 0^inf 1 D> (22)^a+2 1 S [+2a +10]
--> 0^inf 1 (11)^a+2 D> 1 S [+4a +14]
--> 0^inf 1 (11)^a+2 <D 2 S [+4a +15]
--> 0^inf <D (22)^a+3 S [+6a +20]
--> 0^inf 1 A> (22)^a+3 S [+6a +21]
--> 0^inf 1 <B 0 2 (22)^a+2 S [+6a +22]
--> 0^inf <A 2 0 2 (22)^a+2 S [+6a +23]
--> 0^inf 1 B> 2 0 2 (22)^a+2 S [+6a +24]
--> 0^inf 1 <A 0 0 2 (22)^a+2 S [+6a +25]
--> 0^inf <B 2 0 0 2 (22)^a+2 S [+6a +26]
--> 0^inf <C (22)^1 0 0 2 (22)^a+2 S [+6a +27]
--> 0^inf 2 D> (22)^1 0 0 2 (22)^a+2 S [+6a +28]
--> 0^inf 2 (11)^1 D> 0 0 2 (22)^a+2 S [+6a +30]
--> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31]
13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
by:
0^inf 2 1 (11)^a A> 0 2^b S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 2^b-3 S by rule 11-2
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 0 2^b-3 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 0 2^b-3 S
= 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
14. 0^inf 2 1 (11)^a A> 0 2^3k+v S --> 0^inf 2 1 (11)^(g_2)^k(a) A> 0 2^v S
by repetition of rule 13
15. 0^inf 2 1 <A S --> 0^inf 1 D> 2^3 S [+8 steps]
by:
0^inf 2 1 <A S
--> 0^inf 2 <B 2 S
--> 0^inf <A 0 2 S
--> 0^inf 1 B> 0 2 S
--> 0^inf 1 <C 2 2 S
--> 0^inf <C 1 2^2 S
--> 0^inf 2 D> 1 2^2 S
--> 0^inf 2 <D 2^3 S
--> 0^inf 1 D> 2^3 S
16. 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 2 1 2 0^inf
--> 0^inf 2 (11)^a+1 B> 2 1 2 0^inf
--> 0^inf 2 (11)^a+1 <A 0 1 2 0^inf
--> 0^inf 2 <A (22)^a+1 0 1 2 0^inf
--> 0^inf <B 0 (22)^a+1 0 1 2 0^inf
--> 0^inf <C 2 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 D> 2 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 1 D> 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 (11)^1 A> (22)^a+1 0 1 2 0^inf
--> 0^inf 2 (11)^3a+4 A> 0 1 2 0^inf by rule 6
--> 0^inf 2 (11)^3a+4 1 B> 1 2 0^inf
--> 0^inf 2 (11)^3a+4 1 <A (22)^1 0^inf
--> 0^inf 2 1 <A (22)^3a+5 0^inf
--> 0^inf 1 D> 2 (22)^3a+6 0^inf by rule 15
--> 0^inf (11)^3a+7 D> 0^inf
--> 0^inf (11)^3a+7 1 A> 0^inf
--> 0^inf (11)^3a+8 B> 0^inf
--> 0^inf (11)^3a+8 <C 2 0^inf
--> 0^inf <C (11)^3a+8 2 0^inf
--> 0^inf 2 D> (11)^3a+8 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3a+7 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3a+7 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3a+7 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3a+7 2 0^inf
--> 0^inf <D 2^3 (11)^3a+7 2 0^inf
--> 0^inf 1 A> (22)^1 2 (11)^3a+7 2 0^inf
--> 0^inf 1 <B 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 D> 2^2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf
17. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 (11)^3a+4 A> 0 2 1 S by rule 11-1
--> 0^inf 2 (11)^3a+4 1 B> 2 1 S
--> 0^inf 2 1 (11)^3a+4 <A 0 1 S
--> 0^inf 2 1 <A (22)^3a+4 0 1 S
--> 0^inf 1 D> 2 (22)^3a+5 0 1 S by rule 15
--> 0^inf (11)^3a+6 D> 0 1 S
--> 0^inf (11)^3a+6 1 A> 1 S
--> 0^inf (11)^3a+6 1 <B 2 S
--> 0^inf 1 <B (22)^3a+6 2 S
--> 0^inf <A (22)^3a+7 S
--> 0^inf 1 B> (22)^3a+7 S
--> 0^inf 1 <A 0 2 (22)^3a+6 S
--> 0^inf <B 2 0 2 (22)^3a+6 S
--> 0^inf <C 2 2 0 2 (22)^3a+6 S
--> 0^inf 2 D> 2 2 0 (22)^3a+6 2 S
--> 0^inf 2 (11)^1 D> 0 (22)^3a+6 2 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S
18. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^g_2(a) A> 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by rule 17
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 2 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 2 S
= 0^inf 2 1 (11)^g_2(a) A> 2 S
19. 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
by:
0^inf 2 1 (11)^a A> 2 1^3 S
--> 0^inf 2 1 (11)^a <B 0 1^3 S
--> 0^inf 2 1 <B (22)^a 0 1^3 S
--> 0^inf 2 <A 2 (22)^a 0 1^3 S
--> 0^inf <B 0 2 (22)^a 0 1^3 S
--> 0^inf <C 2 0 2 (22)^a 0 1^3 S
--> 0^inf 2 D> 2 0 2 (22)^a 0 1^3 S
--> 0^inf 2 1 D> 0 (22)^a 2 0 1^3 S
--> 0^inf 2 (11)^1 A> (22)^a 2 0 1^3 S
--> 0^inf 2 (11)^3a+1 A> 2 0 1^3 S by rule 6
--> 0^inf 2 (11)^3a+1 <B 0 0 1^3 S
--> 0^inf 2 <B (22)^3a+1 0 0 1^3 S
--> 0^inf <A 0 (22)^3a+1 0 0 1^3 S
--> 0^inf 1 B> 0 (22)^3a+1 0 0 1^3 S
--> 0^inf 1 <C 2 (22)^3a+1 0 0 1^3 S
--> 0^inf <C 1 2 (22)^3a+1 0 0 1^3 S
--> 0^inf 2 D> 1 2 (22)^3a+1 0 0 1^3 S
--> 0^inf 2 <D (22)^3a+2 0 0 1^3 S
--> 0^inf 1 D> (22)^3a+2 0 0 1^3 S
--> 0^inf 1 (11)^3a+2 D> 0 0 1^3 S
--> 0^inf (11)^3a+3 A> 0 1^3 S
--> 0^inf (11)^3a+3 1 B> 1^3 S
Call this rule 19***
with:
0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S
Continuing:
--> 0^inf (11)^3a+3 1 <A 2 1^2 S
--> 0^inf 1 <A (22)^3a+3 2 1^2 S
--> 0^inf <B (22)^3a+4 1^2 S
Call this rule 19**
with:
0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S
Continuing:
--> 0^inf <C 2 (22)^3a+4 1^2 S
--> 0^inf 2 D> 2 (22)^3a+4 1^2 S
--> 0^inf 2 1 (11)^3a+4 D> 1^2 S
--> 0^inf 2 1 (11)^3a+4 <D 2 1 S
--> 0^inf 2 <D (22)^3a+5 1 S
--> 0^inf 1 D> (22)^3a+5 1 S
--> 0^inf 1 (11)^3a+5 D> 1 S
Call this rule 19*
with:
0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S
Continuing:
--> 0^inf 1 (11)^3a+5 <D 2 S
--> 0^inf <D (22)^3a+6 S
--> 0^inf 1 A> (22)^3a+6 S
--> 0^inf 1 <B 0 2 (22)^3a+5 S
--> 0^inf <A 2 0 2 (22)^3a+5 S
--> 0^inf 1 B> 2 0 2 (22)^3a+5 S
--> 0^inf 1 <A 0 0 2 (22)^3a+5 S
--> 0^inf <B 2 0 0 (22)^3a+5 2 S
--> 0^inf <C (22)^1 0 0 (22)^3a+5 2 S
--> 0^inf 2 D> (22)^1 0 0 (22)^3a+5 2 S
--> 0^inf 2 (11)^1 D> 0 0 (22)^3a+5 2 S
--> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
This rule can be rewritten as:
0^inf 2 1 (11)^a A> 2 1^b S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 1^b-3 S
20. 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^b S
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^b-1 S by rule 18
--> 0^inf 2 1 (11)^1 A> 0 (22)^3*g_2(a)+5 2 1^b-4 S by rule 19
= 0^inf 2 1 (11)^1 A> 0 2^6*g_2(a)+11 1^b-4 S
Modulus for rule 14:
6*g_2(a)+11 = 3(2*g_2(a)+3)+2 = 3k+2
3k+2 mod 3 = 2
--> 0^inf 2 1 (11)^(g_2)^(2*g_2(a)+3)(1) A> 0 (22)^1 1^b-4 S
= 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S
21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S
by repetition of rule 20
22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^2 2 0^inf by rule 18
--> 0^inf 1 (11)^3*g_2(a)+5 D> 2 0^inf by rule 19*
--> 0^inf (11)^3*g_2(a)+6 D> 0^inf
--> 0^inf (11)^3*g_2(a)+6 1 A> 0^inf
--> 0^inf (11)^3*g_2(a)+7 B> 0^inf
--> 0^inf (11)^3*g_2(a)+7 <C 2 0^inf
--> 0^inf <C (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 D> (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <D 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 A> 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <B 0 2^2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 D> 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
= 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1 2 0^inf by rule 18
--> 0^inf <B (22)^3*g_2(a)+4 2 0^inf by rule 19**
--> 0^inf <C (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+5 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
by:
0^inf (11)^a A> 0 (22)^1 1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 2 0^inf by rule 18
--> 0^inf (11)^3*g_2(a)+3 1 B> 2 0^inf by rule 19***
--> 0^inf (11)^3*g_2(a)+3 1 <A 0^inf
--> 0^inf 1 <A (22)^3*g_2(a)+3 0^inf
--> 0^inf <B 2 (22)^3*g_2(a)+3 0^inf
--> 0^inf <C (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 (11)^3*g_2(a)+4 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+4 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+5 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 0^inf by rule 14
--> 0^inf 2 (11)^g_2(a)+1 B> 0^inf
--> 0^inf 2 (11)^g_2(a)+1 <C 2 0^inf
--> 0^inf 2 <C (11)^g_2(a)+1 2 0^inf
--> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
</pre>
==Functions==
<math>g_1(n) = 3n + 4</math>
Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math>
And <math>1 = 3^1 - 2</math>
It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math>
<math>g_2(n) = 3^{3n + 7}-2</math>
<math>g_3(n) = g_2^{2 \times (g_2(n)+3)}(1)</math>
<pre>
Modulus of g_2^a(1):
1 is of the form 4k+1
g_2(n) = 3^(3n+7)-2
3^2k mod 4 = 1
3^2k+1 mod 4 = 3
g_2(4k+1) = 3^(3*(4k+1)+7)-2 = 3^(12k+10)-2 = 3^2m-2
3^2m mod 4 = 1 --> -2
3^2m - 2 mod 4 = 3
g_2(4k+1) mod 4 = 3
--> g_2(4k+1) = 4m+3
g_2(4k+3) = 3^(3*(4k+3)+7)-2 = 3^(12k+16)-2 = 3^2m-2
3^2m-2 mod 4 = 3
g_2(4k+1) mod 4 = 3
--> g_2(4k+3) = 4m+3
-->g_2^k(1) = 4m+3
-->g_2^k(1) mod 4 = 3
</pre>
<pre>
Let's have L(a, b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf
* L(a, 4k+v) --> L(g_3^k(a), v) by rule 21
* L(a, 0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25
* L(a, 1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24
* L(a, 2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23
* L(a, 3) --> L(1, 6*g_2(a) + 12) by rule 22
</pre>
==Trajectory==
<pre>
S=0: 0^inf <A 0^inf
S=1: 0^inf 1 B> 0^inf
S=2: 0^inf 1 <C 2 0^inf
S=3: 0^inf <C 1 2 0^inf
S=4: 0^inf 2 D> 1 2 0^inf
S=5: 0^inf 2 <D 2^2 0^inf
S=6: 0^inf 1 D> 2^2 0^inf
S=8: 0^inf 1^3 D> 0^inf
S=9: 0^inf (11)^2 A> 0^inf
S=10: 0^inf (11)^2 1 B> 0^inf
S=11: 0^inf (11)^2 1 <C 2 0^inf
S=16: 0^inf <C (11)^2 1 2 0^inf
S=17: 0^inf 2 D> (11)^2 1 2 0^inf
S=18: 0^inf 2 <D 2 (11)^2 2 0^inf
S=19: 0^inf 1 D> 2 (11)^2 2 0^inf
S=20: 0^inf (11)^1 D> (11)^2 2 0^inf
S=21: 0^inf (11)^1 <D 2 1 (11)^1 2 0^inf
S=23: 0^inf <D 2^3 1^3 2 0^inf
S=24: 0^inf 1 A> 2^3 1^3 2 0^inf
S=25: 0^inf 1 <B 0 2^2 1^3 2 0^inf
S=26: 0^inf <A 2 0 2^2 1^3 2 0^inf
S=27: 0^inf 1 B> 2 0 2^2 1^3 2 0^inf
S=28: 0^inf 1 <A 0 0 2^2 1^3 2 0^inf
S=29: 0^inf <B 2 0 0 2^2 1^3 2 0^inf
S=30: 0^inf <C 2 2 0 0 2^2 1^3 2 0^inf
S=31: 0^inf 2 D> 2^2 0 0 2^2 1^3 2 0^inf
S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf
S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf
= L(1, 3) after 34 steps
</pre>
L(1, 3) --> <math>L(1, 6*g_2(1) + 12)</math> by rule 22, which can be simplified to L(1, 354294)
--> <math>L(g_3^{88573}(1), 2)</math>
<math>L(g_3^{88573}(1), 2)</math> --> 0^inf 1 Z> <math>(11)^{3 \times (g_2(g_3^{88573}(1)) +6}</math> 2 0^inf
<math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math>
==Approximate Score==
<math>g_2(n) = 3^{3n+7}-2</math>
<math>3^{n} < g_2(n) < 3^{3^{n}}</math>
<math>g_3(n) = g_2^{2 \times (g_2(n)) +3}(1)</math>
<math>(3 \uparrow)^{k} n < g_2^{k}(n) < (3 \uparrow)^{2k} n</math>
<math>(3 \uparrow)^{k} 1 < g_2^{k}(1) < (3 \uparrow)^{2k} 1</math>
<math>3 \uparrow\uparrow k < g_2^{k}(1) < 3 \uparrow\uparrow 2k</math>
<math>3 \uparrow\uparrow 2 \times g_2(n) +6 < g_3(n) < 3 \uparrow\uparrow 4 \times g_2(n) +12</math>
<math>3 \uparrow\uparrow 2 \times 3^{3 \uparrow\uparrow 2 \times g_2(n) +6} +6 < g_3^{2}(n)</math>
<math>3 \uparrow\uparrow 3 \uparrow\uparrow (2 \times g_2(n) +7) < g_3^{2}(n) < 3 \uparrow\uparrow 3 \uparrow\uparrow (4 \times g_2(n) +13)</math>
<math>(3 \uparrow\uparrow)^{k} (2 \times g_2(n) + 7) < g_3^{k}(n) < (3 \uparrow\uparrow)^{k} (5 \times g_2(n) + 13)</math>
<math>(3 \uparrow\uparrow)^{k} 118101 < g_3^{k}(1) < (3 \uparrow\uparrow)^{k} 295248</math>
<math>3 \uparrow\uparrow\uparrow k+1 < g_3^{k}(1) < 3 \uparrow\uparrow\uparrow k+2</math>
<math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math>
<math>3 \uparrow\uparrow\uparrow 88574 < \sigma < S < 3 \uparrow\uparrow\uparrow 88575</math>
==Permutations==
'''Starting in state B'''
<pre>
S=0: 0^inf <B 0^inf
S=1: 0^inf <C 2 0^inf
S=2: 0^inf 2 D> 2 0^inf
S=3: 0^inf 2 1 D> 0^inf
S=4: 0^inf 2 1^2 A> 0^inf
S=5: 0^inf 2 1^3 B> 0^inf
S=6: 0^inf 2 1^3 <C 2 0^inf
S=9: 0^inf 2 <C 1^3 2 0^inf
S=10: 0^inf 1 Z> 1^3 2 0^inf
</pre>
'''Starting in state C'''
<pre>
S=0: 0^inf <C 0^inf
S=1: 0^inf 2 D> 0^inf
S=2: 0^inf 2 1 A> 0^inf
S=3: 0^inf 2 1^2 B> 0^inf
S=4: 0^inf 2 1^2 <C 2 0^inf
S=6: 0^inf 2 <C 1^2 2 0^inf
S=7: 0^inf 1 Z> 1^2 2 0^inf
</pre>
'''Starting in state D'''
<pre>
Enters configuration L(1,0) after 23 steps.
Halting tape: 0^inf 1 Z> (11)^10 1 2 0^inf
</pre>
</div></div>
={{TM|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}}=
4. A [[BB(6)]] [[holdout]] TM. Analysed in October 2025. Its fate is currently unknown.
<div class="toccolours mw-collapsible mw-collapsed">'''Analysis'''<div class="mw-collapsible-content">
For this analysis the undefined D0 transition will be set to 1RZ.
{| class="wikitable"
|+
!
!0
!1
|-
|A
|1RB
|1LE
|-
|B
|1LB
|1LC
|-
|C
|1RD
|0LE
|-
|D
|1RZ
|0RB
|-
|E
|1RF
|1LA
|-
|F
|0RA
|0RD
|}
<pre>
S is any tape configuration
1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
by:
S D> 1^2 S
--> S 0 B> 1 S [+1]
--> S 0 <C 1 S [+2]
--> S 1 D> 1 S [+3]
3. S D> 1^a 1 S --> S 1^a D> 1 S |for a > 0 [+3a steps]
by repetition of rule 2
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
  S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
by:
S 1^2 D> 1 0 S
--> S 1^2 0 B> 0 S [+1]
--> S 1^2 0 <B 1 S [+2]
--> S 1^2 <B 1^2 S [+3]
--> S 1 <C 1^3 S [+4]
--> S <E 0 1^3 S [+5]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)
by:
S 0 1^a <E S
--> S 0 <E 1^a S [+a]
--> S 1 F> 1^a S [+a +1]
--> S 1 0 D> 1^a-1 S [+a +2]
= S 1 0 D> 1^a-2 1 S
--> S 1 0 1^a-2 D> 1 S [+4a -4]
7. S 0 1^a D> 1 0 S --> S 1 0 1^a-4 D> 1 0 1^3 S [+4a -7 steps] (if a mod 2 = 0 and a >= 4)
by:
S 0 1^a D> 1 0 S
--> S 0 1^a 0 B> 0 S [+1]
--> S 0 1^a 0 <B 1 S [+2]
--> S 0 1^a <B 1^2 S [+3]
--> S 0 1^a-1 <C 1^3 S [+4]
--> S 0 1^a-2 <E 0 1^3 S [+5]
--> S 1 0 1^a-4 D> 1 0 1^3 S [+4a -7] by rule 6
8. S 0 1^4k+v D> 1 0 1^b S --> S 1^k 0 1^v D> 1 0 1^b+3k S (if v mod 2 = 0 and k ≥ 1)
[+4bk -8k^2 +k steps where b = 4k + v]
by repetition of rule 7
9. S 0 1^2 D> 1 0 1^c S --> S 1^2 0 1^c+1 D> 1 S [+3c +13 steps]
by:
S 0 1^2 D> 1 0 1^c S
--> S 0 1^2 0 B> 0 1^c S [+1]
--> S 0 1^2 0 <B 1^c+1 S [+2]
--> S 0 1^2 <B 1^c+2 S [+3]
--> S 0 1 <C 1^c+3 S [+4]
--> S 0 <E 0 1^c+3 S [+5]
--> S 1 F> 0 1^c+3 S [+6]
--> S 1 0 A> 1^c+3 S [+7]
--> S 1 0 <E 1^c+3 S [+8]
--> S 1^2 F> 1^c+3 S [+9]
--> S 1^2 0 D> 1^c+2 S [+10]
= S 1^2 0 D> 1^c+1 1 S [+10]
--> S 1^2 0 1^c+1 D> 1 S [+3c +13]
10. S 0 1^a 0 D> 1 0 S --> S 1 0 1^a-4 D> 1 0 1^4 S [+4a -6 steps] (if a mod 2 = 0 and a ≥ 4)
by:
S 0 1^a 0 D> 1 0 S
--> S 0 1^a 0^2 B> 0 S [+1]
--> S 0 1^a 0^2 <B 1 S [+2]
--> S 0 1^a <B 1^3 S [+4]
--> S 0 1^a-1 <C 1^4 S [+5]
--> S 0 1^a-2 <E 0 1^4 S [+6]
--> S 0 <E 1^a-2 0 1^4 S [+a +4]
--> S 1 F> 1^a-2 0 1^4 S [+a +5]
--> S 1 0 D> 1^a-3 0 1^4 S [+a +6]
= S 1 0 D> 1^a-4 1 0 1^4 S [+a +6]
--> S 1 0 1^a-4 D> 1 0 1^4 S [+4a -6]
11. S 0 1^2 0 D> 1 0 1^c S --> S 1^2 0 1^c+2 D> 1 S [+3c +17 steps]
by:
S 0 1^2 0 D> 1 0 1^c S
--> S 0 1^2 0^2 B> 0 1^c S [+1]
--> S 0 1^2 0^2 <B 1^c+1 S [+2]
--> S 0 1^2 <B 1^c+3 S [+4]
--> S 0 1 <C 1^c+4 S [+5]
--> S 0 <E 0 1^c+4 S [+6]
--> S 1 F> 0 1^c+4 S [+7]
--> S 1 0 A> 1^c+4 S [+8]
--> S 1 0 <E 1^c+4 S [+9]
--> S 1^2 F> 1^c+4 S [+10]
--> S 1^2 0 D> 1^c+3 S [+11]
= S 1^2 0 D> 1^c+2 1 S
--> S 1^2 0 1^c+2 D> 1 S [+3c +17]
12. 0^inf D> 1 0 S --> non-halting translated cycler
by:
0^inf D> 1 0 S
--> 0^inf B> 0 S
--> 0^inf <B 1 S
--> spin out
13. S 0^2 1^a 0 D> 1 0 S --> S 1^2 0 1^a-4 D> 1 0 1^4 S [+4a steps] (if a mod 2 = 1 and a ≥ 4)
by:
S 0^2 1^a 0 D> 1 0 S
--> S 0^2 1^a 0^2 B> 0 S [+1]
--> S 0^2 1^a 0^2 <B 1 S [+2]
--> S 0^2 1^a <B 1^3 S [+4]
--> S 0^2 1^a-1 <C 1^4 S [+5]
--> S 0^2 1^a-2 <E 0 1^4 S [+6]
= S 0^2 1 1^a-3 <E 0 1^4 S
--> S 0^2 1 <E 1^a-3 0 1^4 S [+a +3]
--> S 0^2 <A 1^a-2 0 1^4 S [+a +4]
--> S 0 1 B> 1^a-2 0 1^4 S [+a +5]
--> S 0 1 <C 1^a-2 0 1^4 S [+a +6]
--> S 0 <E 0 1^a-2 0 1^4 S [+a +7]
--> S 1 F> 0 1^a-2 0 1^4 S [+a +8]
--> S 1 0 A> 1^a-2 0 1^4 S [+a +9]
--> S 1 0 <E 1^a-2 0 1^4 S [+a +10]
--> S 1^2 F> 1^a-2 0 1^4 S [+a +11]
--> S 1^2 0 D> 1^a-3 0 1^4 S [+a +12]
= S 1^2 0 D> 1^a-4 1 0 1^4 S
--> S 1^2 0 1^a-4 D> 1 0 1^4 S [+4a]
14. S 0^2 1^3 0 D> 1 0 S --> S 1^2 0 1 Z> 1^4 S [+16 steps]
by:
S 0^2 1^3 0 D> 1 0 S
--> S 0^2 1^3 0^2 B> 0 S [+1]
--> S 0^2 1^3 0^2 <B 1 S [+2]
--> S 0^2 1^3 <B 1^3 S [+4]
--> S 0^2 1^2 <C 1^4 S [+5]
--> S 0^2 1 <E 0 1^4 S [+6]
--> S 0^2 <A 1 0 1^4 S [+7]
--> S 0 1 B> 1 0 1^4 S [+8]
--> S 0 1 <C 1 0 1^4 S [+9]
--> S 0 <E 0 1 0 1^4 S [+10]
--> S 1 F> 0 1 0 1^4 S [+11]
--> S 1 0 A> 1 0 1^4 S [+12]
--> S 1 0 <E 1 0 1^4 S [+13]
--> S 1^2 F> 1 0 1^4 S [+14]
--> S 1^2 0 D> 0 1^4 S [+15]
--> S 1^2 0 1 Z> 1^4 S [+16]
15. S 0 1 0 D> 1 0 1^c S --> S 1^c+4 D> 1 S [+3c +15 steps]
by:
S 0 1 0 D> 1 0 1^c S
--> S 0 1 0^2 B> 0 1^c S [+1]
--> S 0 1 0^2 <B 1^c+1 S [+2]
--> S 0 1 <B 1^c+3 S [+4]
--> S 0 <C 1^c+4 S [+5]
--> S 1 D> 1^c+4 S [+6]
= S 1 D> 1^c+3 1 S [+6]
--> S 1^c+4 D> 1 S [+3c +15]
16. S 0 1^a 0 1^b D> 1 0 S --> S 1 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +2 steps] (if b mod 2 = 1 and a mod 2 = 0 and a ≥ 2)
by:
S 0 1^a 0 1^b D> 1 0 S
--> S 0 1^a 0 1^b 0 B> 0 S [+1]
--> S 0 1^a 0 1^b 0 <B 1 S [+2]
--> S 0 1^a 0 1^b <B 1^2 S [+3]
--> S 0 1^a 0 1^b-1 <C 1^3 S [+4]
--> S 0 1^a 0 1^b-2 <E 0 1^3 S [+5]
--> S 0 1^a 0 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0 1^a 0 <A 1^b-2 0 1^3 S [+b +3]
--> S 0 1^a+1 B> 1^b-2 0 1^3 S [+b +4]
--> S 0 1^a+1 <C 1^b-2 0 1^3 S [+b +5]
--> S 0 1^a <E 0 1^b-2 0 1^3 S [+b +6]
--> S 0 <E 1^a 0 1^b-2 0 1^3 S [+b +a +6]
--> S 1 F> 1^a 0 1^b-2 0 1^3 S [+b +a +7]
--> S 1 0 D> 1^a-1 0 1^b-2 0 1^3 S [+b +a +8]
= S 1 0 D> 1^a-2 1 0 1^b-2 0 1^3 S
--> S 1 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +2]
17. S 0^2 1^b D> 1 0 S --> S 1^2 0 1^b-4 D> 1 0 1^3 S [+4b -1 steps] (if b mod 2 = 1 and b ≥ 5)
by:
S 0^2 1^b D> 1 0 S
--> S 0^2 1^b 0 B> 0 S [+1]
--> S 0^2 1^b 0 <B 1 S [+2]
--> S 0^2 1^b <B 1^2 S [+3]
--> S 0^2 1^b-1 <C 1^3 S [+4]
--> S 0^2 1^b-2 <E 0 1^3 S [+5]
--> S 0^2 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0^2 <A 1^b-2 0 1^3 S [+b +3]
--> S 0 1 B> 1^b-2 0 1^3 S [+b +4]
--> S 0 1 <C 1^b-2 0 1^3 S [+b +5]
--> S 0 <E 0 1^b-2 0 1^3 S [+b +6]
--> S 1 F> 0 1^b-2 0 1^3 S [+b +7]
--> S 1 0 A> 1^b-2 0 1^3 S [+b +8]
--> S 1 0 <E 1^b-2 0 1^3 S [+b +9]
--> S 1^2 F> 1^b-2 0 1^3 S [+b +10]
--> S 1^2 0 D> 1^b-3 0 1^3 S [+b +11]
= S 1^2 0 D> 1^b-4 1 0 1^3 S
--> S 1^2 0 1^b-4 D> 1 0 1^3 S [+4b -1]
18. S 0^2 1^3 D> 1 0 S --> S 1^2 0 1 Z> 1^3 S [+15 steps]
by:
S 0^2 1^3 D> 1 0 S
--> S 0^2 1^3 0 B> 0 S [+1]
--> S 0^2 1^3 0 <B 1 S [+2]
--> S 0^2 1^3 <B 1^2 S [+3]
--> S 0^2 1^2 <C 1^3 S [+4]
--> S 0^2 1 <E 0 1^3 S [+5]
--> S 0^2 <A 1 0 1^3 S [+6]
--> S 0 1 B> 1 0 1^3 S [+7]
--> S 0 1 <C 1 0 1^3 S [+8]
--> S 0 <E 0 1 0 1^3 S [+9]
--> S 1 F> 0 1 0 1^3 S [+10]
--> S 1 0 A> 1 0 1^3 S [+11]
--> S 1 0 <E 1 0 1^3 S [+12]
--> S 1^2 F> 1 0 1^3 S [+13]
--> S 1^2 0 D> 0 1^3 S [+14]
--> S 1^2 0 1 Z> 1^3 S [+15]
19. S 0^2 1^a 0 1^b D> 1 0 S --> S 1^2 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +8 steps] (if b mod 2 = 1 and a mod 2 = 1 and a ≥ 2)
by:
S 0^2 1^a 0 1^b D> 1 0 S
--> S 0^2 1^a 0 1^b 0 B> 0 S [+1]
--> S 0^2 1^a 0 1^b 0 <B 1 S [+2]
--> S 0^2 1^a 0 1^b <B 1^2 S [+3]
--> S 0^2 1^a 0 1^b-1 <C 1^3 S [+4]
--> S 0^2 1^a 0 1^b-2 <E 0 1^3 S [+5]
--> S 0^2 1^a 0 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0^2 1^a 0 <A 1^b-2 0 1^3 S [+b +3]
--> S 0^2 1^a+1 B> 1^b-2 0 1^3 S [+b +4]
--> S 0^2 1^a+1 <C 1^b-2 0 1^3 S [+b +5]
--> S 0^2 1^a <E 0 1^b-2 0 1^3 S [+b +6]
--> S 0^2 1 <E 1^a-1 0 1^b-2 0 1^3 S [b +a +5]
--> S 0^2 <A 1^a 0 1^b-2 0 1^3 S [+b +a +6]
--> S 0 1 B> 1^a 0 1^b-2 0 1^3 S [+b +a +7]
--> S 0 1 <C 1^a 0 1^b-2 0 1^3 S [+b +a +8]
--> S 0 <E 0 1^a 0 1^b-2 0 1^3 S [+b +a +9]
--> S 1 F> 0 1^a 0 1^b-2 0 1^3 S [+b +a +10]
--> S 1 0 A> 1^a 0 1^b-2 0 1^3 S [+b +a +11]
--> S 1 0 <E 1^a 0 1^b-2 0 1^3 S [+b +a +12]
--> S 1^2 F> 1^a-1 1 0 1^b-2 0 1^3 S [+b +a +13]
--> S 1^2 0 D> 1^a-2 1 0 1^b-2 0 1^3 S [+b +a +14]
--> S 1^2 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +8]
20. S 0^2 1 0 1^b D> 1 0 S --> S 1^2 0 1 Z> 1^b-2 0 1^3 S [+b +16 steps] (if b mod 2 = 1)
by:
S 0^2 1 0 1^b D> 1 0 S
--> S 0^2 1 0 1^b 0 B> 0 S [+1]
--> S 0^2 1 0 1^b 0 <B 1 S [+2]
--> S 0^2 1 0 1^b <B 1^2 S [+3]
--> S 0^2 1 0 1^b-1 <C 1^3 S [+4]
--> S 0^2 1 0 1^b-2 <E 0 1^3 S [+5]
--> S 0^2 1 0 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0^2 1 0 <A 1^b-2 0 1^3 S [+b +3]
--> S 0^2 1^2 B> 1^b-2 0 1^3 S [+b +4]
--> S 0^2 1^2 <C 1^b-2 0 1^3 S [+b +5]
--> S 0^2 1 <E 0 1^b-2 0 1^3 S [+b +6]
--> S 0^2 <A 1 0 1^b-2 0 1^3 S [+b +7]
--> S 0 1 B> 1 0 1^b-2 0 1^3 S [+b +8]
--> S 0 1 <C 1 0 1^b-2 0 1^3 S [+b +9]
--> S 0 <E 0 1 0 1^b-2 0 1^3 S [+b +10]
--> S 1 F> 0 1 0 1^b-2 0 1^3 S [+b +11]
--> S 1 0 A> 1 0 1^b-2 0 1^3 S [+b +12]
--> S 1 0 <E 1 0 1^b-2 0 1^3 S [+b +13]
--> S 1^2 F> 1 0 1^b-2 0 1^3 S [+b +14]
--> S 1^2 0 D> 0 1^b-2 0 1^3 S [+b +15]
--> S 1^2 0 1 Z> 1^b-2 0 1^3 S [+b +16]
21. S 0 1^a 0 1 D> 1 0 1^c S --> S 0 1^a+c+3 D> 1 S [+3c +11 steps]
by:
S 0 1^a 0 1 D> 1 0 1^c S
--> S 0 1^a 0 1 0 B> 0 1^c S [+1]
--> S 0 1^a 0 1 0 <B 1^c+1 S [+2]
--> S 0 1^a 0 1 <B 1^c+2 S [+3]
--> S 0 1^a 0 <C 1^c+3 S [+4]
--> S 0 1^a+1 D> 1^c+2 1 S [+5]
--> S 0 1^a+c+3 D> 1 S [+3c +11]
</pre>
==Functions==
<pre>
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
b mod 2 = 0:
  b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...) by rule 7
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...) by rule 9
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...) by rule 10
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...) by rule 11
        a = 0: A(0, 0, c, ...) --> spin out by rule 12
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...) by rule 13
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ... by rule 14
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...) by rule 15
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...) by rule 16
        a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...) by rule 17
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ... by rule 18
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...) by rule 19
        a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ... by rule 20
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...) by rule 21
</pre>
Rules 12, 18 and 20 are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.
'''Accelerated rules:'''
<pre>
R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)
A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) by rule 17 [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) by rule 16 [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) by rule 15 [+16k +10]
A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1
A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) by rule 17 [8k^2 +18k -49]
--> A(0, c+6k-4, ...) by rule 21 [+8k^2 +36k + 3c -65]
</pre>
'''Using the accelerated rules:'''
<pre>
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
b mod 2 = 0:
  b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) by rule 8
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...) by rule 9
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...) by rule 10
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...) by rule 11
        a = 0: unreachable
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...) by rule 13
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ... by rule 14
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...) by rule 15
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...) by rule 16
        a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...) by rule 17
            b = 3: unreachable
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...) by rule 19
        a = 1: unreachable
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...) by rule 21
</pre>
==Trajectory==
<pre>
S=0: 0^inf <A 0^inf
S=1: 0^inf 1 B> 0^inf
S=2: 0^inf 1 <B 1 0^inf
S=3: 0^inf <C 1^2 0^inf
S=4: 0^inf 1 D> 1^2 0^inf
S=7: 0^inf 1^2 D> 1 0^inf = A(0, 2, 0)
So this TM reaches configuration A(0, 2, 0) after 7 steps.
</pre>
==Permutations==
'''Starting in state B'''
<pre>
S=0: 0^inf <B 0^inf
--> spin out
</pre>
'''Starting in state C'''
<pre>
S=0: 0^inf <C 0^inf
S=1: 0^inf 1 D> 0^inf
S=2: 0^inf 1^2 Z> 0^inf
</pre>
'''Starting in state D'''
<pre>
S=0: 0^inf <D 0^inf
S=1: 0^inf 1 Z> 0^inf
</pre>
'''Starting in state E'''
<pre>
S=0: 0^inf <E 0^inf
S=1: 0^inf 1 F> 0^inf
S=2: 0^inf 1 0 A> 0^inf
S=3: 0^inf 1 0 1 B> 0^inf
S=4: 0^inf 1 0 1 <B 1 0^inf
S=5: 0^inf 1 0 <C 1^2 0^inf
S=6: 0^inf 1^2 D> 1^2 0^inf
S=9: 0^inf 1^3 D> 1 0^inf = A(0, 3, 0)
--> Reaches configuration A(0, 3, 0) after 9 steps.
S=24: 0^inf 1^2 0 1 Z> 1^3 0^inf
</pre>
'''Starting in state F'''
<pre>
S=0: 0^inf <F 0^inf
S=1: 0^inf A> 0^inf
--> Equivalent to starting in state A, but started one step earlier.
</pre>
</div></div>
</div></div>

Latest revision as of 18:40, 10 November 2025

A page for analyses of individual machines.

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch)

1. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in September 2025. This TM runs the shortest of Pavel's potential champions, achieving a score of about 109.873987.

Analysis
0 1 2
A 1RB 1RD 1LC
B 2LB 1RB 1LC
C 1RZ 1LA 1LD
D 2RB 2RA 2RD
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S 1 B> 0 S --> S <A 1^2 S [+4 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]

7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps]
by:
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
--> S (12)^a-1 2 A> (11)^b+2 S
--> S (12)^a-1 2 (12)^b+2 A> S

8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]
Obtained by repeating rule 7.

9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
by:
S (12)^a <D (11)^b 0^inf
--> S (12)^a D> (11)^b 0^inf
--> S (12)^a (21)^b D> 0^inf
--> S (12)^a (21)^b 2 B> 0^inf
--> S (12)^a (21)^b 2 <B 2 0^inf
--> S (12)^a (21)^b <C 1 2 0^inf
--> S (12)^a <C (11)^b 1 2 0^inf
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
--> S (12)^a-1 <D (11)^2b+3 0^inf

10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
Obtained by repeating rule 9.

11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps]
by:
S (11)^a <D (11)^b 0^inf
--> S (11)^a-1 1 2 A> (11)^b 0^inf
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> S (11)^a-1 <A (11)^b+2 0^inf
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf

12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps]
by:
S 1^a <A (11)^b 0^inf
--> S 1^a D> (11)^b 0^inf
--> S 1^a (21)^b D> 0^inf
--> S 1^a (21)^b 2 B> 0^inf
--> S 1^a (21)^b 2 <B 2 0^inf
--> S 1^a (21)^b <C 1 2 0^inf
--> S 1^a <C (11)^b 1 2 0^inf
--> 1^a-1 <A (11)^b+1 2 0^inf

Functions

Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf

  • Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
  • Rule 10: A(a, b, c) --> A(a,0,2b×c+2b×33) which becomes A(a,0,2b+1×33) if c = 3.
  • Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)

Further: let f(n)=2n+1×3

  • If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)
  • A(a, 0, c) --> A(a2,c+3,3) --> A(a2,0,f(c+3)3)
  • A(2k + d, b, 3) --> A(d,fk(b),3)

Trajectory

S=0: 0^inf A> 0^inf
S=1: 0^inf 1 B> 0^inf
S=5: 0^inf <A (11)^1 0^inf
S=6: 0^inf 1 B> (11)^1 0^inf
S=8: 0^inf 1 (11)^1 B> 0^inf
S=9: 0^inf 1 (11)^1 <B 2 0^inf
S=10: 0^inf 1 (11)^1 B> 2 0^inf
S=11: 0^inf 1 (11)^1 <C 1 0^inf
S=12: 0^inf (11)^1 <A (11)^1 0^inf
S=21: 0^inf 1 <A (11)^2 2 0^inf by rule 12
S=22: 0^inf 1 D> (11)^2 2 0^inf
S=26: 0^inf 1 (21)^2 D> 2 0^inf
S=27: 0^inf 1 (21)^2 2 D> 0^inf
S=28: 0^inf 1 (21)^2 2^2 B> 0^inf
S=29: 0^inf 1 (21)^2 2^2 <B 2 0^inf
S=30: 0^inf 1 (21)^2 2 <C 1 2 0^inf
S=31: 0^inf 1 (21)^2 <D (11)^1 2 0^inf
S=32: 0^inf 1 (21)^1 2^2 A> (11)^1 2 0^inf
S=34: 0^inf 1 (21)^1 2^2 (12)^1 A> 2 0^inf
S=35: 0^inf 1 (21)^1 2^2 (12)^1 <C 1 0^inf
S=36: 0^inf 1 (21)^1 2^2 1 <D (11)^1 0^inf
S=37: 0^inf 1 (21)^1 2^3 A> (11)^1 0^inf
S=39: 0^inf (12)^2 2^2 (12)^1 A> 0^inf
S=46: 0^inf (12)^2 2^2 <A (11)^2 0^inf
S=47: 0^inf (12)^2 2 <C 1 (11)^2 0^inf
S=48: 0^inf (12)^2 <D (11)^3 0^inf
S=172: 0^inf (12)^1 <D (11)^9 0^inf by rule 9
S=716: 0^inf <D (11)^21 0^inf by rule 9
S=717: 0^inf 2 B> (11)^21 0^inf
S=759: 0^inf 2 (11)^21 B> 0^inf
S=760: 0^inf 2 (11)^21 <B 2 0^inf
S=761: 0^inf 2 (11)^21 B> 2 0^inf
S=762: 0^inf 2 (11)^21 <C 1 0^inf
S=763: 0^inf 2 (11)^20 1 <A (11)^1 0^inf
S=772: 0^inf 2 (11)^20 <A (11)^2 2 0^inf
S=773: 0^inf 2 (11)^20 D> (11)^2 2 0^inf
S=777: 0^inf 2 (11)^20 (21)^2 D> 2 0^inf
S=778: 0^inf 2 (11)^20 (21)^2 2 D> 0^inf
S=779: 0^inf 2 1 (11)^19 1 (21)^2 2^2 B> 0^inf
S=780: 0^inf 2 1 (11)^19 (12)^3 2 <B 2 0^inf
S=781: 0^inf 2 1 (11)^19 (12)^3 <C 1 2 0^inf
S=782: 0^inf 2 1 (11)^19 (12)^2 1 <D (11)^1 2 0^inf
S=783: 0^inf 2 1 (11)^19 (12)^2 2 A> (11)^1 2 0^inf
S=785: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 A> 2 0^inf
S=786: 0^inf 2 1 (11)^19 (12)^2 2 (12)^1 <C 1 0^inf
S=787: 0^inf 2 1 (11)^19 (12)^2 2 1 <D (11)^1 0^inf
S=788: 0^inf 2 1 (11)^19 (12)^2 2^2 A> (11)^1 0^inf
S=790: 0^inf 2 1 (11)^19 (12)^2 2^2 (12)^1 A> 0^inf
S=797: 0^inf 2 1 (11)^19 (12)^2 2^2 <A (11)^2 0^inf
S=798: 0^inf 2 1 (11)^19 (12)^2 2 <C 1 (11)^2 0^inf
S=799: 0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
= A(19, 2, 3)

A(19, 2, 3) --> A(1,f9(2),3) --> A(1,0,f10(2)3)

Let m = f10(2)3

--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf

Final trajectory:
0^inf 2 1 (11)^1 <D (11)^m 0^inf
--> 0^inf 2 1 1 2 A> (11)^m 0^inf
--> 0^inf 2 1 (12)^m+1 A> 0^inf
--> 0^inf 2 1 <A (11)^m+2 0^inf
--> 0^inf 2 1 D> (11)^m+2 0^inf
--> 0^inf (21)^m+3 D> 0^inf
--> 0^inf (21)^m+3 2 B> 0^inf
--> 0^inf (21)^m+3 2 <B 2 0^inf
--> 0^inf (21)^m+3 <C (12)^1 0^inf
--> 0^inf <C (11)^m+3 (12)^1 0^inf
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
Score = 2m + 9

Approximate Score

Score calculated in HyperCalc:

(10^)^8 30,302,671.815163

Or in tetration: 10^^9.873987 (truncated)

Permutations

Starting in state B

0^inf <B 0^inf
--> translated cycler

Starting in state C

0^inf <C 0^inf
--> 0^inf 1 Z> 0^inf

Starting in state D

0^inf <D 0^inf
S=1: 0^inf 2 B> 0^inf
S=2: 0^inf 2 <B 2 0^inf
S=3: 0^inf <C 1 2 0^inf
S=4: 0^inf 1 Z> 1 2 0^inf

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)

2. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM runs the longest of Pavel's potential champions and is - as of October 20th 2025 - the highest scoring BB(4,3) TM with score > 2227.92×1028.

Analysis
0 1 2
A 1RB 1RD 1LC
B 2LB 1RB 1LC
C 1RZ 1LA 1LD
D 0RB 2RA 2RD
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S A> 0^2 S --> S <A 1^2 S [+5 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
by:
S (12)^a A> 0^2 S
--> S (12)^a <A (11)^1 S
--> S <A (11)^a+1 S

7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
by:
S A> (11)^1 2^b S
--> S (12)^1 A> 2^b S
--> S (12)^1 <C 1 2^b-1 S
--> S 1 <D (11)^1 2^b-1 S
--> S 2 A> (11)^1 2^b-1 S
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps]
by repetition of rule 7

9. S D> 0^2 S --> S <B 2^2 S [+3 steps]

10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps]
by:
S 2 <D (11)^a 0^2 S
--> S 2 D> (11)^a 0^2 S
--> S 2 (21)^a D> 0^2 S
--> S 2 (21)^a <B 2^2 S
--> S 2 (21)^a B> 2^2 S
--> S 2 (21)^a <C 1 2 S
--> S 2 <C (11)^a 1 2 S
--> S <D (11)^a+1 2 S

11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps]
by:
S 2 <D (11)^a 2 0^2 S
--> S 2 D> (11)^a 2 0^2 S
--> S 2 (21)^a D> 2 0^2 S
--> S 2 (21)^a 2 D> 0^2 S
--> S 2 (21)^a 2 <B 2^2 S
--> S 2 (21)^a <C 1 2^2 S
--> S 2 <C (11)^a 1 2^2 S
--> S <D (11)^a+1 2^2 S

12. S  1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps]
by:
S 1^a <A (11)^b 0^2 S
--> S 1^a D> (11)^b 0^2 S
--> S 1^a (21)^b D> 0^2 S
--> S 1^a (21)^b <B 2^2 S
--> S 1^a (21)^b B> 2^2 S
--> S 1^a (21)^b <C 1 2 S
--> S 1^a <C (11)^b 1 2 S
--> S 1^a-1 <A (11)^b+1 2 S

13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps]
by:
S 1^a <A (11)^b 2 0^2 S
--> S 1^a D> (11)^b 2 0^2 S
--> S 1^a (21)^b D> 2 0^2 S
--> S 1^a (21)^b 2 D> 0^2 S
--> S 1^a (21)^b 2 <B 2^2 S
--> S 1^a (21)^b <C 1 2^2 S
--> S 1^a <C (11)^b 1 2^2 S
--> S 1^a-1 <A (11)^b+1 2^2 S

14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps]
by:
S (12)^a 1 <D (11)^b 0^2 S
--> S (12)^a 2 A> (11)^b 0^2 S
--> S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S

15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps]
by repetition of rule 14

16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps]
by:
S (12)^a 2 1 <D (11)^b 0^inf
--> S (12)^a 2^2 A> (11)^b 0^inf
--> S (12)^a 2^2 (12)^b A> 0^inf
--> S (12)^a 2^2 <A (11)^b+1 0^inf
--> S (12)^a 2 <C 1 (11)^b+1 0^inf
--> S (12)^a <D (11)^b+2 0^inf
--> S (12)^a-1 1 <D (11)^b+3 2 0^inf by rule 10
--> S (12)^a-1 2 A> (11)^b+3 2 0^inf
--> S (12)^a-1 2 (12)^b+3 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+3 <C 1 0^inf
--> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf

17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf
by:
S (12)^a 2 1 <D (11)^b 0^inf
--> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf by rule 16
--> S (12)^a-1 2 1 <D (11)^2b+5 0^inf by rule 15

18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf
by repetition of rule 17

---
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf
by:
S (12)^a 2 1 <D (11)^b 2 0^inf
--> S (12)^a 2^2 A> (11)^b 2 0^inf
--> S (12)^a 2^2 (12)^b A> 2 0^inf
--> S (12)^a 2^2 (12)^b <C 1 0^inf
--> S (12)^a 2^2 (12)^b-1 1 <D (11)^1 0^inf
--> S (12)^a 2^2 1 <D (11)^2b-1 0^inf by rule 15

20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf
by:
S (12)^a 1 <D (11)^b 2 0^inf
--> S (12)^a 2 A> (11)^b 2 0^inf
--> S (12)^a 2 (12)^b A> 2 0^inf
--> S (12)^a 2 (12)^b <C 1 0^inf
--> S (12)^a 2 (12)^b-1 1 <D (11)^1 0^inf
--> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15

21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf
by:
S (12)^a 2^2 1 <D (11)^b 0^inf
--> S (12)^a 2^3 A> (11)^b 0^inf
--> S (12)^a 2^3 (12)^b A> 0^inf
--> S (12)^a 2^3 <A (11)^b+1 0^inf
--> S (12)^a 2^2 <C 1 (11)^b+1 0^inf
--> S (12)^a 2 <D (11)^b+2 0^inf
--> S (12)^a <D (11)^b+3 2 0^inf by rule 10
--> S (12)^a-1 1 <D (11)^b+4 2^2 0^inf by rule 11
--> S (12)^a-1 2 A> (11)^b+4 2^2 0^inf
--> S (12)^a-1 2 (12)^b+4 A> 2^2 0^inf
--> S (12)^a-1 2 (12)^b+4 <C 1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20
--> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*5)-5 0^inf by rule 18
= S (12)^a-1 2^2 1 <D (11)^(2^(b+4)*3-5) 0^inf

22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf
by:
S 1 <D (11)^b 2^2 0^inf
--> S 2 A> (11)^b 2^2 0^inf
--> S 2 (12)^b A> 2^2 0^inf
--> S 2 (12)^b <C 1 2 0^inf
--> S 2 (12)^b-1 1 <D (11)^1 2 0^inf
--> S 2 (12)^b-1 2 1 <D (11)^1 0^inf by rule 20

23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
by:
S (11)^a 2^2 1 <D (11)^b 0^inf
--> S (11)^a 2^3 A> (11)^b 0^inf
--> S (11)^a 2^3 (12)^b A> 0^inf
--> S (11)^a 2^3 <A (11)^b+1 0^inf
--> S (11)^a 2^2 <C 1 (11)^b+1 0^inf
--> S (11)^a 2 <D (11)^b+2 0^inf
--> S (11)^a <D (11)^b+3 2 0^inf by rule 10
--> S (11)^a-1 1 2 A> (11)^b+3 2 0^inf
--> S (11)^a-1 (12)^b+4 A> 2 0^inf
--> S (11)^a-1 (12)^b+4 <C 1 0^inf
--> S (11)^a-1 (12)^b+3 1 <D (11)^1 0^inf
--> S (11)^a-1 1 <D (11)^2b+7 0^inf by rule 15
--> S (11)^a-1 2 A> (11)^2b+7 0^inf
--> S (11)^a-1 2 (12)^2b+7 A> 0^inf
--> S (11)^a-1 2 <A (11)^2b+8 0^inf
--> S (11)^a-1 <C 1 (11)^2b+8 0^inf
--> S (11)^a-2 1 <A (11)^2b+9 0^inf
--> S (11)^a-2 <A (11)^2b+10 2 0^inf by rule 12
--> S (11)^a-3 1 <A (11)^2b+11 2^2 0^inf by rule 13
--> S (11)^a-3 1 D> (11)^2b+11 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 D> 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 2^2 D> 0^inf
--> S (11)^a-3 1 (21)^2b+11 2^2 <B 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 2 <C 1 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf
= S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf
--> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf

24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 2^2 1 <D (11)^c 0^inf
--> 0^inf 2^3 A> (11)^c 0^inf
--> 0^inf 2^3 (12)^c A> 0^inf
--> 0^inf 2^3 <A (11)^c+1 0^inf
--> 0^inf 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 2 <D (11)^c+2 0^inf
--> 0^inf <D (11)^c+3 2 0^inf by rule 10
--> 0^inf B> (11)^c+3 2 0^inf
--> 0^inf (11)^c+3 B> 2 0^inf
--> 0^inf (11)^c+3 <C 1 0^inf
--> 0^inf (11)^c+2 1 <A (11)^1 0^inf
--> 0^inf (11)^c+2 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^c+1 1 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^c+1 1 D> (11)^3 2^2 0^inf
--> 0^inf (11)^c+1 1 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^c+1 1 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^c+1 1 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf

25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf (11)^2 2^2 1 <D (11)^c 0^inf
--> 0^inf (11)^2 2^3 A> (11)^c 0^inf
--> 0^inf (11)^2 2^3 (12)^c A> 0^inf
--> 0^inf (11)^2 2^3 <A (11)^c+1 0^inf
--> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf (11)^2 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 (12)^c+4 A> 2 0^inf
--> 0^inf (11)^1 (12)^c+4 <C 1 0^inf
--> 0^inf (11)^1 (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf (11)^1 1 <D (11)^2c+7 0^inf by rule 15
--> 0^inf (11)^1 2 A> (11)^2c+7 0^inf
--> 0^inf (11)^1 2 (12)^2c+7 A> 0^inf
--> 0^inf (11)^1 2 <A (11)^2c+8 0^inf
--> 0^inf (11)^1 <C 1 (11)^2c+8 0^inf
--> 0^inf 1 <A (11)^2c+9 0^inf
--> 0^inf <A (11)^2c+10 2 0^inf by rule 12
--> 0^inf 1 B> (11)^2c+10 2 0^inf
--> 0^inf 1 (11)^2c+10 B> 2 0^inf
--> 0^inf 1 (11)^2c+10 <C 1 0^inf
--> 0^inf (11)^2c+10 <A (11)^1 0^inf
--> 0^inf (11)^2c+9 1 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+9 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+9 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^2c+9 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf

26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 (11)^1 2^3 A> (11)^c 0^inf
--> 0^inf 1 (11)^1 2^3 (12)^c A> 0^inf
--> 0^inf 1 (11)^1 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 (11)^1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 (11)^1 2 <D (11)^c+2 0^inf
--> 0^inf 1 (11)^1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 2 (12)^c+3 A> 2 0^inf
--> 0^inf (11)^1 2 (12)^c+3 <C 1 0^inf
--> 0^inf (11)^1 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf (11)^1 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf (11)^1 2^2 A> (11)^2c+5 0^inf
--> 0^inf (11)^1 2^2 (12)^2c+5 A> 0^inf
--> 0^inf (11)^1 2^2 <A (11)^2c+6 0^inf
--> 0^inf (11)^1 2 <C 1 (11)^2c+6 0^inf
--> 0^inf (11)^1 <D (11)^2c+7 0^inf
--> 0^inf 1 2 A> (11)^2c+7 0^inf
--> 0^inf (12)^2c+8 A> 0^inf
--> 0^inf <A (11)^2c+9 0^inf
--> 0^inf 1 B> (11)^2c+9 0^inf
--> 0^inf 1 (11)^2c+9 B> 0^inf
--> 0^inf 1 (11)^2c+9 <B 2 0^inf
--> 0^inf 1 (11)^2c+9 B> 2 0^inf
--> 0^inf 1 (11)^2c+9 <C 1 0^inf
--> 0^inf 1 (11)^2c+8 1 <A (11)^1 0^inf
--> 0^inf 1 (11)^2c+8 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+8 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+8 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+8 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+8 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^2c+8 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf

27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 2^3 A> (11)^c 0^inf
--> 0^inf 1 2^3 (12)^c A> 0^inf
--> 0^inf 1 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 2 <D (11)^c+2 0^inf
--> 0^inf 1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf 2 A> (11)^c+3 2 0^inf
--> 0^inf 2 (12)^c+3 A> 2 0^inf
--> 0^inf 2 (12)^c+3 <C 1 0^inf
--> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf 2^2 A> (11)^2c+5 0^inf
--> 0^inf 2^2 (12)^2c+5 A> 0^inf
--> 0^inf 2^2 <A (11)^2c+6 0^inf
--> 0^inf 2 <C 1 (11)^2c+6 0^inf
--> 0^inf <D (11)^2c+7 0^inf
--> 0^inf B> (11)^2c+7 0^inf
--> 0^inf (11)^2c+7 B> 0^inf
--> 0^inf (11)^2c+7 <B 2 0^inf
--> 0^inf (11)^2c+7 B> 2 0^inf
--> 0^inf (11)^2c+7 <C 1 0^inf
--> 0^inf (11)^2c+6 1 <A (11)^1 0^inf
--> 0^inf (11)^2c+6 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+5 1 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+5 1 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+5 1 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 D> 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf

28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
by:
0^inf (11)^1 2^2 1 <D (11)^c 0^inf
--> 0^inf (11)^1 2^3 A> (11)^c 0^inf
--> 0^inf (11)^1 2^3 (12)^c A> 0^inf
--> 0^inf (11)^1 2^3 <A (11)^c+1 0^inf
--> 0^inf (11)^1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^1 2 <D (11)^c+2 0^inf
--> 0^inf (11)^1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (12)^c+4 A> 2 0^inf
--> 0^inf (12)^c+4 <C 1 0^inf
--> 0^inf (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf 1 <D (11)^2c+7 0^inf by rule 15
--> 0^inf 2 A> (11)^2c+7 0^inf
--> 0^inf 2 (12)^2c+7 A> 0^inf
--> 0^inf 2 <A (11)^2c+8 0^inf
--> 0^inf <C 1 (11)^2c+8 0^inf
--> 0^inf 1 Z> 1 (11)^2c+8 0^inf

Note: Rule 29 is not relevant to this TMs trajectory.
29. 0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 (11)^2 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 (11)^2 2^3 A> (11)^c 0^inf
--> 0^inf 1 (11)^2 2^3 (12)^c A> 0^inf
--> 0^inf 1 (11)^2 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf 1 (11)^2 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^2 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^2 2 (12)^c+3 A> 2 0^inf
--> 0^inf (11)^2 2 (12)^c+3 <C 1 0^inf
--> 0^inf (11)^2 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf (11)^2 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf (11)^2 2^2 A> (11)^2c+5 0^inf
--> 0^inf (11)^2 2^2 (12)^2c+5 A> 0^inf
--> 0^inf (11)^2 2^2 <A (11)^2c+6 0^inf
--> 0^inf (11)^2 2 <C 1 (11)^2c+6 0^inf
--> 0^inf (11)^2 <D (11)^2c+7 0^inf
--> 0^inf (11)^1 1 2 A> (11)^2c+7 0^inf
--> 0^inf (11)^1 (12)^2c+8 A> 0^inf
--> 0^inf (11)^1 <A (11)^2c+9 0^inf
--> 0^inf 1 <A (11)^2c+10 2 0^inf by rule 12
--> 0^inf <A (11)^2c+11 2^2 0^inf by rule 13
--> 0^inf 1 B> (11)^2c+11 2^2 0^inf
--> 0^inf 1 (11)^2c+11 B> 2^2 0^inf
--> 0^inf 1 (11)^2c+11 <C 1 2 0^inf
--> 0^inf (11)^2c+11 <A (11)^1 2 0^inf
--> 0^inf (11)^2c+10 1 <A (11)^2 2^2 0^inf by rule 13
--> 0^inf (11)^2c+10 1 D> (11)^2 2^2 0^inf
--> 0^inf (11)^2c+10 1 (21)^2 D> 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2^2 D> 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2c+10 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
= 0^inf (11)^2c+10 (12)^2 2^2 1 <D (11)^1 0^inf

Functions

Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let f1(n)=2n+4×35

Let f2(a,b)=f12×f2(a1,b)+11(1), wheref2(0,b)=b

Rule 21 becomes:

  • D(a,b,c)>D(a,b1,2b+4×35)
  • D1(a,b,c)>D1(a,b1,2b+4×35)

Rule 23 becomes:

  • D(a,0,c)>D(a3,2c+11,1)
  • D1(a,0,c)>D1(a3,2c+11,1)

Rule 24 becomes:

  • D(0,0,c)>D(c+1,3,1)

Rule 25 becomes:

  • D(2,0,c)>D(2c+8,3,1)

Rule 26 becomes:

  • D1(1,0,c)>D1(2c+7,3,1)

Rule 27 becomes:

  • D1(0,0,c)>D(2c+5,3,1)

Rule 28 becomes:

  • D(1, 0, c) --> halt with score 4c + 18

Rule 29 becomes:

  • D1(2,0,c)>D(2c+10,2,1)

By repeating rule 21, a stronger rule can be constructed:

  • D(a,b,c)>D(a,0,f1b(c))
  • D1(a,b,c)>D1(a,0,f1b(c))

If a is greater than or equal to 3: D(a,0,c)>D(a3,2c+11,1)>D(a3,0,f12c+11(1)) =D(a3,0,f2(1,c))

  • D(a,0,c)>D(a3,0,f12c+11(1))

This rule can also be repeated, also note that f12c+11(1)=f2(1,c) and f12×f2(a,b)+11(1)=f2(a+1,b):

  • D(3k+d,0,c)>D(d,0,f2(k,c))
  • D1(3k+d,0,c)>D1(d,0,f2(k,c))

Trajectory

S=0: 0^inf A> 0^inf
S=5: 0^inf <A (11)^1 0^inf
S=6: 0^inf 1 B> (11)^1 0^inf
S=8: 0^inf 1 (11)^1 B> 0^inf
S=9: 0^inf 1 (11)^1 <B 2 0^inf
S=10: 0^inf 1 (11)^1 B> 2 0^inf
S=11: 0^inf 1 (11)^1 <C 1 0^inf
S=12: 0^inf (11)^1 <A (11)^1 0^inf
S=23: 0^inf 1 <A (11)^2 2 0^inf
S=38: 0^inf <A (11)^3 2^2 0^inf
S=39: 0^inf 1 B> (11)^3 2^2 0^inf
S=45: 0^inf 1 (11)^3 B> 2^2 0^inf
S=46: 0^inf 1 (11)^3 <C 1 2 0^inf
S=47: 0^inf (11)^3 <A (11)^1 2 0^inf
S=58: 0^inf 1 (11)^2 <A (11)^2 2^2 0^inf
S=59: 0^inf 1 (11)^2 D> (11)^2 2^2 0^inf
S=63: 0^inf 1 (11)^2 (21)^2 D> 2^2 0^inf
S=65: 0^inf 1 (11)^2 (21)^2 2^2 D> 0^inf
S=68: 0^inf 1 (11)^2 (21)^2 2^2 <B 2^2 0^inf
S=69: 0^inf 1 (11)^2 (21)^2 2 <C 1 2^2 0^inf
S=70: 0^inf (11)^2 (12)^2 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^2 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf
=0^inf (11)^2 (12)^2 2^2 1 <D (11)^1 0^inf
= D(2, 2, 1)
So, the TM starts in configuration D(2, 2, 1).

D(2, 2, 1) -->

D(2,0,f12(1))=D(2,0,f1(91))

e1=f1(91)=295×35

f_1(n) = 2^(n+4)*3 - 5
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1.
Next, 3k+1 mod 3 = 1
So f_1(n) mod 3 = 1
Thus f_1^a(n) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n)
Thus f_2(a,b) mod 3 = 1

D(2,0,e1)

-->D1(2e1+8,3,1)>D1(2e1+8,0,f12(91))

e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1

D1(2e1+8,0,f12(91))

--> D1(1,0,f2(2e1+73,f12(91)))

e2=f2(2e1+73,f12(91))

D1(1,0,e3)

e2mod3=1

--> D1(2e2+7,3,1)>D1(2e2+7,0,f12(91))

2e_3 + 7

Modulus: 2 + 7 --> 9 mod 3 = 0

--> D1(0,0,f2(2e2+73,f12(91)))

e3=f2(2e2+73,f12(91))


D1(0,0,e3)

--> D(2e3+5,3,1)>D(2e3+5,0,f12(91))

e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1

--> D(1,0,f2(2e3+43,f12(91)))

e4=f2(2e3+43,f12(91))


D(1,0,e4)

--> halts with score 4e4+18.

Approximate Score

4e4+18

e4=f2(2e3+43,f12(91))

e3=f2(2e2+73,f12(91))

e2=f2(e1+73,f12(91))

e1=295×35

f1(n)=2n+4×35

f2(a,b)=f12×f2(a1,b)+11(1), where f2(0,b)=b

  • f1(n):

2n+5<f1(n)<2n+6

(2)an+5<f1a(n)<(2)an+7

(2)a5<f1a(1)<(2)a8

2(a+2)<f1a(1)<2(a+3)

  • f2(a,b):

f2(a,b)=f12×f2(a1,b)+11(1), where f2(0,b)=b

2(2×f2(a1,b)+13)<f2(a,b)<2(2×f2(a1,b)+14)

(2)ab<f2(a,b)<(2)a+1b

222<e1<f12(91)<2222

(2)a(222)<f2(a,f12(91))<(2)a(2222)

2(a+3)<f2(a,f12(91))<2(a+4)

2(7.92×1028)<e2<2(7.93×1028)

22(7.92×1028)<e3<22(7.93×1028)

245<222(7.92×1028)<e4<σ<S<222(7.93×1028)

This score would make 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch) the new BB(4,3) champion.

Permutations

Starting in state B

0^inf <B 0^inf
--> 0^inf <B 2^k 0^inf
--> translated cycler

Starting in state C

0^inf <C 0^inf
-->0^inf 1 Z> 0^inf

Starting in state D

0^inf <D 0^inf
--> 0^inf <B 0^inf
--> translated cycler

1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD (bbch)

3. One of the seven potential BB(4,3) champions discovered by Pavel Kropitz in May 2024. Analysed in October 2025. This TM has rules which are based on the remainder of some value modulo 4, although it is quite unlucky that three of the four possible remainders lead to halting. The TM achieves a score of around 388574.

Analysis
0 1 2
A 1RB 2LB 0LB
B 2LC 2LA 0LA
C 2RD 1LC 1RZ
D 1RA 2LD 1RD
S is any tape configuration

1. S 1^a <C S --> S <C 1^a S [+a steps]
2. S 1^a <D S --> S <D 2^a S [+a steps]
3. S D> 2^a S --> S 1^a D> S [+a steps]

4. S (11)^a <A S --> S <A (22)^a S [+2a steps]
   S (11)^a <B S --> S <B (22)^a S [+2a steps]

5. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24 steps]
by:
0^inf 2 (11)^a A> (22)^b S
--> 0^inf 2 (11)^a <B 0 2 (22)^b-1 S [+1]
--> 0^inf 2 <B (22)^a 0 2 (22)^b-1 S [+2a +1]
--> 0^inf <A 0 (22)^a 0 2 (22)^b-1 S [+2a +2]
--> 0^inf 1 B> 0 (22)^a 0 2 (22)^b-1 S [+2a +3]
--> 0^inf 1 <C 2 (22)^a 0 2 (22)^b-1 S [+2a +4]
--> 0^inf <C 1 2 (22)^a 0 2 (22)^b-1 S [+2a +5]
--> 0^inf 2 D> 1 2 (22)^a 0 2 (22)^b-1 S [+2a +6]
--> 0^inf 2 <D (22)^a+1 0 2 (22)^b-1 S [+2a +7]
--> 0^inf 1 D> (22)^a+1 0 2 (22)^b-1 S [+2a +8]
--> 0^inf 1 (11)^a+1 D> 0 2 (22)^b-1 S [+4a +10]
--> 0^inf (11)^a+2 A> 2 (22)^b-1 S [+4a +11]
--> 0^inf (11)^a+2 <B 0 (22)^b-1 S [+4a +12]
--> 0^inf <B (22)^a+2 0 (22)^b-1 S [+6a +16]
--> 0^inf <C 2 (22)^a+2 0 (22)^b-1 S [+6a +17]
--> 0^inf 2 D> 2 (22)^a+2 0 (22)^b-1 S [+6a +18]
--> 0^inf 2 1 (11)^a+2 D> 0 (22)^b-1 S [+8a +23]
--> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24]

6. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3b A> S
by repetition of rule 5

7. 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28 steps]
by:
0^inf 2 (11)^a A> 0 (22)^b S
--> 0^inf 2 (11)^a 1 B> (22)^b S [+1]
--> 0^inf 2 1 (11)^a <A 0 2 (22)^b-1 S [+2]
--> 0^inf 2 1 <A (22)^a 0 2 (22)^b-1 S [+2a +2]
--> 0^inf 2 <B 2 (22)^a 0 2 (22)^b-1 S [+2a +3]
--> 0^inf <A 0 2 (22)^a 0 2 (22)^b-1 S [+2a +4]
--> 0^inf 1 B> 0 2 (22)^a 0 2 (22)^b-1 S [+2a +5]
--> 0^inf 1 <C (22)^a+1 0 2 (22)^b-1 S [+2a +6]
--> 0^inf <C 1 (22)^a+1 0 2 (22)^b-1 S [+2a +7]
--> 0^inf 2 D> 1 (22)^a+1 0 2 (22)^b-1 S [+2a +8]
--> 0^inf 2 <D 2 (22)^a+1 0 2 (22)^b-1 S [+2a +9]
--> 0^inf 1 D> 2 (22)^a+1 0 2 (22)^b-1 S [+2a +10]
--> 0^inf (11)^a+2 D> 0 2 (22)^b-1 S [+4a +13]
--> 0^inf (11)^a+2 1 A> 2 (22)^b-1 S [+4a +14]
--> 0^inf (11)^a+2 1 <B 0 (22)^b-1 S [+4a +15]
--> 0^inf 1 <B (22)^a+2 0 (22)^b-1 S [+6a +19]
--> 0^inf <A 2 (22)^a+2 0 (22)^b-1 S [+6a +20]
--> 0^inf 1 B> 2 (22)^a+2 0 (22)^b-1 S [+6a +21]
--> 0^inf 1 <A 0 (22)^a+2 0 (22)^b-1 S [+6a +22]
--> 0^inf <B 2 0 (22)^a+2 0 (22)^b-1 S [+6a +23]
--> 0^inf <C 2 2 0 (22)^a+2 0 (22)^b-1 S [+6a +24]
--> 0^inf 2 D> (22)^1 0 (22)^a+2 0 (22)^b-1 S [+6a +25]
--> 0^inf 2 1 1 D> 0 (22)^a+2 0 (22)^b-1 S [+6a +27]
--> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28]

8. 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 1 (11)^a+3 A> S [+8a +27 steps]
by:
0^inf 2 (11)^a A> 2 0 2 S
--> 0^inf 2 (11)^a <B 0^2 2 S [+1]
--> 0^inf 2 <B (22)^a 0^2 2 S [+2a +1]
--> 0^inf <A 0 (22)^a 0^2 2 S [+2a +2]
--> 0^inf 1 B> 0 (22)^a 0^2 2 S [+2a +3]
--> 0^inf 1 <C 2 (22)^a 0^2 2 S [+2a +4]
--> 0^inf <C 1 2 (22)^a 0^2 2 S [+2a +5]
--> 0^inf 2 D> 1 2 (22)^a 0^2 2 S [+2a +6]
--> 0^inf 2 <D (22)^a+1 0^2 2 S [+2a +7]
--> 0^inf 1 D> (22)^a+1 0^2 2 S [+2a +8]
--> 0^inf 1 (11)^a+1 D> 0^2 2 S [+4a +10]
--> 0^inf (11)^a+2 A> 0 2 S [+4a +11]
--> 0^inf (11)^a+2 1 B> 2 S [+4a +12]
--> 0^inf (11)^a+2 1 <A 0 S [+4a +13]
--> 0^inf 1 <A (22)^a+2 0 S [+6a +17]
--> 0^inf <B 2 (22)^a+2 0 S [+6a +18]
--> 0^inf <C (22)^a+3 0 S [+6a +19]
--> 0^inf 2 D> (22)^a+3 0 S [+6a +20]
--> 0^inf 2 (11)^a+3 D> 0 S [+8a +26]
--> 0^inf 2 1 (11)^a+3 A> S [+8a +27]

9. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S
by:
0^inf 2 1 (11)^a A> (22)^b S
--> 0^inf 2 1 (11)^a <B 0 2 (22)^b-1 S
--> 0^inf 2 1 <B (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 <A 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf <B 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf <C 2 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 D> 2 0 2 (22)^a 0 2 (22)^b-1 S
--> 0^inf 2 1 D> 0 2 (22)^a 0 (22)^b-1 2 S
--> 0^inf 2 (11)^1 A> (22)^a 2 0 (22)^b-1 2 S
--> 0^inf 2 (11)^3a+1 A> 2 0 2 (22)^b-1 S by rule 6
--> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S by rule 8
= 0^inf 2 1 (11)^g_1(a) A> (22)^b-1 S

10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S
by repetition of rule 9
g_1(n) = 3n + 4 

11. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^b S
--> 0^inf 2 (11)^a+1 B> (22)^b S
--> 0^inf 2 (11)^a+1 <A 0 2 (22)^b-1 S
--> 0^inf 2 <A (22)^a+1 0 2 (22)^b-1 S
--> 0^inf <B 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf <C 2 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 D> 2 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 1 D> 0 (22)^a+1 0 2 (22)^b-1 S
--> 0^inf 2 (11)^1 A> (22)^a+1 0 (22)^b-1 2 S
--> 0^inf 2 (11)^3a+4 A> 0 (22)^b-1 2 S by rule 6
Call this rule 11-1
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S by rule 7
Call this rule 11-2

12. 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31 steps]
by:
0^inf 2 (11)^a A> 0 11 S
--> 0^inf 2 (11)^a 1 B> 11 S [+1]
--> 0^inf 2 (11)^a 1 <A 2 1 S [+2]
--> 0^inf 2 1 <A (22)^a 2 1 S [+2a +2]
--> 0^inf 2 <B (22)^a+1 1 S [+2a +3]
--> 0^inf <A 0 (22)^a+1 1 S [+2a +4]
--> 0^inf 1 B> 0 (22)^a+1 1 S [+2a +5]
--> 0^inf 1 <C 2 (22)^a+1 1 S [+2a +6]
--> 0^inf <C 1 2 (22)^a+1 1 S [+2a +7]
--> 0^inf 2 D> 1 2 (22)^a+1 1 S [+2a +8]
--> 0^inf 2 <D (22)^a+2 1 S [+2a +9]
--> 0^inf 1 D> (22)^a+2 1 S [+2a +10]
--> 0^inf 1 (11)^a+2 D> 1 S [+4a +14]
--> 0^inf 1 (11)^a+2 <D 2 S [+4a +15]
--> 0^inf <D (22)^a+3 S [+6a +20]
--> 0^inf 1 A> (22)^a+3 S [+6a +21]
--> 0^inf 1 <B 0 2 (22)^a+2 S [+6a +22]
--> 0^inf <A 2 0 2 (22)^a+2 S [+6a +23]
--> 0^inf 1 B> 2 0 2 (22)^a+2 S [+6a +24]
--> 0^inf 1 <A 0 0 2 (22)^a+2 S [+6a +25]
--> 0^inf <B 2 0 0 2 (22)^a+2 S [+6a +26]
--> 0^inf <C (22)^1 0 0 2 (22)^a+2 S [+6a +27]
--> 0^inf 2 D> (22)^1 0 0 2 (22)^a+2 S [+6a +28]
--> 0^inf 2 (11)^1 D> 0 0 2 (22)^a+2 S [+6a +30]
--> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31]

13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
by:
0^inf 2 1 (11)^a A> 0 2^b S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 2^b-3 S by rule 11-2
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 0 2^b-3 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 0 2^b-3 S
= 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S

14. 0^inf 2 1 (11)^a A> 0 2^3k+v S --> 0^inf 2 1 (11)^(g_2)^k(a) A> 0 2^v S
by repetition of rule 13

15. 0^inf 2 1 <A S --> 0^inf 1 D> 2^3 S [+8 steps]
by:
0^inf 2 1 <A S
--> 0^inf 2 <B 2 S
--> 0^inf <A 0 2 S
--> 0^inf 1 B> 0 2 S
--> 0^inf 1 <C 2 2 S
--> 0^inf <C 1 2^2 S
--> 0^inf 2 D> 1 2^2 S
--> 0^inf 2 <D 2^3 S
--> 0^inf 1 D> 2^3 S

16. 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 2 1 2 0^inf
--> 0^inf 2 (11)^a+1 B> 2 1 2 0^inf
--> 0^inf 2 (11)^a+1 <A 0 1 2 0^inf
--> 0^inf 2 <A (22)^a+1 0 1 2 0^inf
--> 0^inf <B 0 (22)^a+1 0 1 2 0^inf
--> 0^inf <C 2 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 D> 2 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 1 D> 0 (22)^a+1 0 1 2 0^inf
--> 0^inf 2 (11)^1 A> (22)^a+1 0 1 2 0^inf
--> 0^inf 2 (11)^3a+4 A> 0 1 2 0^inf by rule 6
--> 0^inf 2 (11)^3a+4 1 B> 1 2 0^inf
--> 0^inf 2 (11)^3a+4 1 <A (22)^1 0^inf
--> 0^inf 2 1 <A (22)^3a+5 0^inf
--> 0^inf 1 D> 2 (22)^3a+6 0^inf by rule 15
--> 0^inf (11)^3a+7 D> 0^inf
--> 0^inf (11)^3a+7 1 A> 0^inf
--> 0^inf (11)^3a+8 B> 0^inf
--> 0^inf (11)^3a+8 <C 2 0^inf
--> 0^inf <C (11)^3a+8 2 0^inf
--> 0^inf 2 D> (11)^3a+8 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3a+7 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3a+7 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3a+7 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3a+7 2 0^inf
--> 0^inf <D 2^3 (11)^3a+7 2 0^inf
--> 0^inf 1 A> (22)^1 2 (11)^3a+7 2 0^inf
--> 0^inf 1 <B 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 D> 2^2 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3a+7 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf

17. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 (11)^3a+4 A> 0 2 1 S by rule 11-1
--> 0^inf 2 (11)^3a+4 1 B> 2 1 S
--> 0^inf 2 1 (11)^3a+4 <A 0 1 S
--> 0^inf 2 1 <A (22)^3a+4 0 1 S
--> 0^inf 1 D> 2 (22)^3a+5 0 1 S by rule 15
--> 0^inf (11)^3a+6 D> 0 1 S
--> 0^inf (11)^3a+6 1 A> 1 S
--> 0^inf (11)^3a+6 1 <B 2 S
--> 0^inf 1 <B (22)^3a+6 2 S
--> 0^inf <A (22)^3a+7 S
--> 0^inf 1 B> (22)^3a+7 S
--> 0^inf 1 <A 0 2 (22)^3a+6 S
--> 0^inf <B 2 0 2 (22)^3a+6 S
--> 0^inf <C 2 2 0 2 (22)^3a+6 S
--> 0^inf 2 D> 2 2 0 (22)^3a+6 2 S
--> 0^inf 2 (11)^1 D> 0 (22)^3a+6 2 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S

18. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^g_2(a) A> 2 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1 S
--> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S by rule 17
--> 0^inf 2 1 (11)^g_1^(3a+6)(1) A> 2 S by rule 10
= 0^inf 2 1 (11)^(3^(3a+7)-2) A> 2 S
= 0^inf 2 1 (11)^g_2(a) A> 2 S

19. 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
by:
0^inf 2 1 (11)^a A> 2 1^3 S
--> 0^inf 2 1 (11)^a <B 0 1^3 S
--> 0^inf 2 1 <B (22)^a 0 1^3 S
--> 0^inf 2 <A 2 (22)^a 0 1^3 S
--> 0^inf <B 0 2 (22)^a 0 1^3 S
--> 0^inf <C 2 0 2 (22)^a 0 1^3 S
--> 0^inf 2 D> 2 0 2 (22)^a 0 1^3 S
--> 0^inf 2 1 D> 0 (22)^a 2 0 1^3 S
--> 0^inf 2 (11)^1 A> (22)^a 2 0 1^3 S
--> 0^inf 2 (11)^3a+1 A> 2 0 1^3 S by rule 6
--> 0^inf 2 (11)^3a+1 <B 0 0 1^3 S
--> 0^inf 2 <B (22)^3a+1 0 0 1^3 S
--> 0^inf <A 0 (22)^3a+1 0 0 1^3 S
--> 0^inf 1 B> 0 (22)^3a+1 0 0 1^3 S
--> 0^inf 1 <C 2 (22)^3a+1 0 0 1^3 S
--> 0^inf <C 1 2 (22)^3a+1 0 0 1^3 S
--> 0^inf 2 D> 1 2 (22)^3a+1 0 0 1^3 S
--> 0^inf 2 <D (22)^3a+2 0 0 1^3 S
--> 0^inf 1 D> (22)^3a+2 0 0 1^3 S
--> 0^inf 1 (11)^3a+2 D> 0 0 1^3 S
--> 0^inf (11)^3a+3 A> 0 1^3 S
--> 0^inf (11)^3a+3 1 B> 1^3 S
Call this rule 19***
with:
0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S
Continuing:
--> 0^inf (11)^3a+3 1 <A 2 1^2 S
--> 0^inf 1 <A (22)^3a+3 2 1^2 S
--> 0^inf <B (22)^3a+4 1^2 S
Call this rule 19**
with:
0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S
Continuing:
--> 0^inf <C 2 (22)^3a+4 1^2 S
--> 0^inf 2 D> 2 (22)^3a+4 1^2 S
--> 0^inf 2 1 (11)^3a+4 D> 1^2 S
--> 0^inf 2 1 (11)^3a+4 <D 2 1 S
--> 0^inf 2 <D (22)^3a+5 1 S
--> 0^inf 1 D> (22)^3a+5 1 S
--> 0^inf 1 (11)^3a+5 D> 1 S
Call this rule 19*
with:
0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S
Continuing:
--> 0^inf 1 (11)^3a+5 <D 2 S
--> 0^inf <D (22)^3a+6 S
--> 0^inf 1 A> (22)^3a+6 S
--> 0^inf 1 <B 0 2 (22)^3a+5 S
--> 0^inf <A 2 0 2 (22)^3a+5 S
--> 0^inf 1 B> 2 0 2 (22)^3a+5 S
--> 0^inf 1 <A 0 0 2 (22)^3a+5 S
--> 0^inf <B 2 0 0 (22)^3a+5 2 S
--> 0^inf <C (22)^1 0 0 (22)^3a+5 2 S
--> 0^inf 2 D> (22)^1 0 0 (22)^3a+5 2 S
--> 0^inf 2 (11)^1 D> 0 0 (22)^3a+5 2 S
--> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
This rule can be rewritten as:
0^inf 2 1 (11)^a A> 2 1^b S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 1^b-3 S

20. 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^b S
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^b-1 S by rule 18
--> 0^inf 2 1 (11)^1 A> 0 (22)^3*g_2(a)+5 2 1^b-4 S by rule 19
= 0^inf 2 1 (11)^1 A> 0 2^6*g_2(a)+11 1^b-4 S
Modulus for rule 14:
6*g_2(a)+11 = 3(2*g_2(a)+3)+2 = 3k+2
3k+2 mod 3 = 2
--> 0^inf 2 1 (11)^(g_2)^(2*g_2(a)+3)(1) A> 0 (22)^1 1^b-4 S
= 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S

21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S
by repetition of rule 20

22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1^2 2 0^inf by rule 18
--> 0^inf 1 (11)^3*g_2(a)+5 D> 2 0^inf by rule 19*
--> 0^inf (11)^3*g_2(a)+6 D> 0^inf
--> 0^inf (11)^3*g_2(a)+6 1 A> 0^inf
--> 0^inf (11)^3*g_2(a)+7 B> 0^inf
--> 0^inf (11)^3*g_2(a)+7 <C 2 0^inf
--> 0^inf <C (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 D> (11)^3*g_2(a)+7 2 0^inf
--> 0^inf 2 <D 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 D> 2 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 D> 1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf (11)^1 <D 2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <D 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 A> 2^3 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <B 0 2^2 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <A 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 B> 2 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 <A 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <B 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf <C 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 D> 2 2 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 (11)^1 D> 0 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3*g_2(a)+6 2 0^inf
= 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf

23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 1 2 0^inf by rule 18
--> 0^inf <B (22)^3*g_2(a)+4 2 0^inf by rule 19**
--> 0^inf <C (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+5 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+5 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+6 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+6 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf

24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
by:
0^inf (11)^a A> 0 (22)^1 1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 2 2 0^inf by rule 18
--> 0^inf (11)^3*g_2(a)+3 1 B> 2 0^inf by rule 19***
--> 0^inf (11)^3*g_2(a)+3 1 <A 0^inf
--> 0^inf 1 <A (22)^3*g_2(a)+3 0^inf
--> 0^inf <B 2 (22)^3*g_2(a)+3 0^inf
--> 0^inf <C (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 D> (22)^3*g_2(a)+4 0^inf
--> 0^inf 2 (11)^3*g_2(a)+4 D> 0^inf
--> 0^inf 2 1 (11)^3*g_2(a)+4 A> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 B> 0^inf
--> 0^inf 2 (11)^3*g_2(a)+5 <C 2 0^inf
--> 0^inf 2 <C (11)^3*g_2(a)+5 2 0^inf
--> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf

25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
by:
0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf
--> 0^inf 2 1 (11)^g_2(a) A> 0^inf by rule 14
--> 0^inf 2 (11)^g_2(a)+1 B> 0^inf
--> 0^inf 2 (11)^g_2(a)+1 <C 2 0^inf
--> 0^inf 2 <C (11)^g_2(a)+1 2 0^inf
--> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf

Functions

g1(n)=3n+4

Note that (3k2)×3+4=3k+12

And 1=312

It follows that g1n(1)=3n+12

g2(n)=33n+72

g3(n)=g22×(g2(n)+3)(1)

Modulus of g_2^a(1):

1 is of the form 4k+1
g_2(n) = 3^(3n+7)-2
3^2k mod 4 = 1
3^2k+1 mod 4 = 3

g_2(4k+1) = 3^(3*(4k+1)+7)-2 = 3^(12k+10)-2 = 3^2m-2
3^2m mod 4 = 1 --> -2
3^2m - 2 mod 4 = 3
g_2(4k+1) mod 4 = 3
--> g_2(4k+1) = 4m+3

g_2(4k+3) = 3^(3*(4k+3)+7)-2 = 3^(12k+16)-2 = 3^2m-2
3^2m-2 mod 4 = 3
g_2(4k+1) mod 4 = 3
--> g_2(4k+3) = 4m+3

-->g_2^k(1) = 4m+3
-->g_2^k(1) mod 4 = 3
Let's have L(a, b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf

* L(a, 4k+v) --> L(g_3^k(a), v) by rule 21
* L(a, 0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25
* L(a, 1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24
* L(a, 2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23
* L(a, 3) --> L(1, 6*g_2(a) + 12) by rule 22

Trajectory

S=0: 0^inf <A 0^inf
S=1: 0^inf 1 B> 0^inf
S=2: 0^inf 1 <C 2 0^inf
S=3: 0^inf <C 1 2 0^inf
S=4: 0^inf 2 D> 1 2 0^inf
S=5: 0^inf 2 <D 2^2 0^inf
S=6: 0^inf 1 D> 2^2 0^inf
S=8: 0^inf 1^3 D> 0^inf
S=9: 0^inf (11)^2 A> 0^inf
S=10: 0^inf (11)^2 1 B> 0^inf
S=11: 0^inf (11)^2 1 <C 2 0^inf
S=16: 0^inf <C (11)^2 1 2 0^inf
S=17: 0^inf 2 D> (11)^2 1 2 0^inf
S=18: 0^inf 2 <D 2 (11)^2 2 0^inf
S=19: 0^inf 1 D> 2 (11)^2 2 0^inf
S=20: 0^inf (11)^1 D> (11)^2 2 0^inf
S=21: 0^inf (11)^1 <D 2 1 (11)^1 2 0^inf
S=23: 0^inf <D 2^3 1^3 2 0^inf
S=24: 0^inf 1 A> 2^3 1^3 2 0^inf
S=25: 0^inf 1 <B 0 2^2 1^3 2 0^inf
S=26: 0^inf <A 2 0 2^2 1^3 2 0^inf
S=27: 0^inf 1 B> 2 0 2^2 1^3 2 0^inf
S=28: 0^inf 1 <A 0 0 2^2 1^3 2 0^inf
S=29: 0^inf <B 2 0 0 2^2 1^3 2 0^inf
S=30: 0^inf <C 2 2 0 0 2^2 1^3 2 0^inf
S=31: 0^inf 2 D> 2^2 0 0 2^2 1^3 2 0^inf
S=33: 0^inf 2 (11)^1 D> 0^2 2^2 1^3 2 0^inf
S=34: 0^inf 2 1 (11)^1 A> 0 (22)^1 1^3 2 0^inf
= L(1, 3) after 34 steps

L(1, 3) --> L(1,6*g2(1)+12) by rule 22, which can be simplified to L(1, 354294)

--> L(g388573(1),2)

L(g388573(1),2) --> 0^inf 1 Z> (11)3×(g2(g388573(1))+6 2 0^inf

σ=6×g2(g388573(1))+14

Approximate Score

g2(n)=33n+72

3n<g2(n)<33n

g3(n)=g22×(g2(n))+3(1)

(3)kn<g2k(n)<(3)2kn

(3)k1<g2k(1)<(3)2k1

3k<g2k(1)<32k

32×g2(n)+6<g3(n)<34×g2(n)+12

32×332×g2(n)+6+6<g32(n)

33(2×g2(n)+7)<g32(n)<33(4×g2(n)+13)

(3)k(2×g2(n)+7)<g3k(n)<(3)k(5×g2(n)+13)

(3)k118101<g3k(1)<(3)k295248

3k+1<g3k(1)<3k+2


σ=6×g2(g388573(1))+14

388574<σ<S<388575

Permutations

Starting in state B

S=0: 0^inf <B 0^inf
S=1: 0^inf <C 2 0^inf
S=2: 0^inf 2 D> 2 0^inf
S=3: 0^inf 2 1 D> 0^inf
S=4: 0^inf 2 1^2 A> 0^inf
S=5: 0^inf 2 1^3 B> 0^inf
S=6: 0^inf 2 1^3 <C 2 0^inf
S=9: 0^inf 2 <C 1^3 2 0^inf
S=10: 0^inf 1 Z> 1^3 2 0^inf

Starting in state C

S=0: 0^inf <C 0^inf
S=1: 0^inf 2 D> 0^inf
S=2: 0^inf 2 1 A> 0^inf
S=3: 0^inf 2 1^2 B> 0^inf
S=4: 0^inf 2 1^2 <C 2 0^inf
S=6: 0^inf 2 <C 1^2 2 0^inf
S=7: 0^inf 1 Z> 1^2 2 0^inf

Starting in state D

Enters configuration L(1,0) after 23 steps.
Halting tape: 0^inf 1 Z> (11)^10 1 2 0^inf

1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD (bbch)

4. A BB(6) holdout TM. Analysed in October 2025. Its fate is currently unknown.

Analysis

For this analysis the undefined D0 transition will be set to 1RZ.

0 1
A 1RB 1LE
B 1LB 1LC
C 1RD 0LE
D 1RZ 0RB
E 1RF 1LA
F 0RA 0RD
S is any tape configuration

1. S 0^a <B S --> S <B 1^a S [+a steps]

2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
by:
S D> 1^2 S
--> S 0 B> 1 S [+1]
--> S 0 <C 1 S [+2]
--> S 1 D> 1 S [+3]

3. S D> 1^a 1 S --> S 1^a D> 1 S |for a > 0 [+3a steps]
by repetition of rule 2

4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
   S (11)^a <A S --> S <A (11)^a S [+2a steps]

5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
by:
S 1^2 D> 1 0 S
--> S 1^2 0 B> 0 S [+1]
--> S 1^2 0 <B 1 S [+2]
--> S 1^2 <B 1^2 S [+3]
--> S 1 <C 1^3 S [+4]
--> S <E 0 1^3 S [+5]

6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)
by:
S 0 1^a <E S
--> S 0 <E 1^a S [+a]
--> S 1 F> 1^a S [+a +1]
--> S 1 0 D> 1^a-1 S [+a +2]
= S 1 0 D> 1^a-2 1 S
--> S 1 0 1^a-2 D> 1 S [+4a -4]

7. S 0 1^a D> 1 0 S --> S 1 0 1^a-4 D> 1 0 1^3 S [+4a -7 steps] (if a mod 2 = 0 and a >= 4)
by:
S 0 1^a D> 1 0 S
--> S 0 1^a 0 B> 0 S [+1]
--> S 0 1^a 0 <B 1 S [+2]
--> S 0 1^a <B 1^2 S [+3]
--> S 0 1^a-1 <C 1^3 S [+4]
--> S 0 1^a-2 <E 0 1^3 S [+5]
--> S 1 0 1^a-4 D> 1 0 1^3 S [+4a -7] by rule 6

8. S 0 1^4k+v D> 1 0 1^b S --> S 1^k 0 1^v D> 1 0 1^b+3k S (if v mod 2 = 0 and k ≥ 1)
[+4bk -8k^2 +k steps where b = 4k + v]
by repetition of rule 7

9. S 0 1^2 D> 1 0 1^c S --> S 1^2 0 1^c+1 D> 1 S [+3c +13 steps]
by:
S 0 1^2 D> 1 0 1^c S
--> S 0 1^2 0 B> 0 1^c S [+1]
--> S 0 1^2 0 <B 1^c+1 S [+2]
--> S 0 1^2 <B 1^c+2 S [+3]
--> S 0 1 <C 1^c+3 S [+4]
--> S 0 <E 0 1^c+3 S [+5]
--> S 1 F> 0 1^c+3 S [+6]
--> S 1 0 A> 1^c+3 S [+7]
--> S 1 0 <E 1^c+3 S [+8]
--> S 1^2 F> 1^c+3 S [+9]
--> S 1^2 0 D> 1^c+2 S [+10]
= S 1^2 0 D> 1^c+1 1 S [+10]
--> S 1^2 0 1^c+1 D> 1 S [+3c +13]

10. S 0 1^a 0 D> 1 0 S --> S 1 0 1^a-4 D> 1 0 1^4 S [+4a -6 steps] (if a mod 2 = 0 and a ≥ 4)
by:
S 0 1^a 0 D> 1 0 S
--> S 0 1^a 0^2 B> 0 S [+1]
--> S 0 1^a 0^2 <B 1 S [+2]
--> S 0 1^a <B 1^3 S [+4]
--> S 0 1^a-1 <C 1^4 S [+5]
--> S 0 1^a-2 <E 0 1^4 S [+6]
--> S 0 <E 1^a-2 0 1^4 S [+a +4]
--> S 1 F> 1^a-2 0 1^4 S [+a +5]
--> S 1 0 D> 1^a-3 0 1^4 S [+a +6]
= S 1 0 D> 1^a-4 1 0 1^4 S [+a +6]
--> S 1 0 1^a-4 D> 1 0 1^4 S [+4a -6]

11. S 0 1^2 0 D> 1 0 1^c S --> S 1^2 0 1^c+2 D> 1 S [+3c +17 steps]
by:
S 0 1^2 0 D> 1 0 1^c S
--> S 0 1^2 0^2 B> 0 1^c S [+1]
--> S 0 1^2 0^2 <B 1^c+1 S [+2]
--> S 0 1^2 <B 1^c+3 S [+4]
--> S 0 1 <C 1^c+4 S [+5]
--> S 0 <E 0 1^c+4 S [+6]
--> S 1 F> 0 1^c+4 S [+7]
--> S 1 0 A> 1^c+4 S [+8]
--> S 1 0 <E 1^c+4 S [+9]
--> S 1^2 F> 1^c+4 S [+10]
--> S 1^2 0 D> 1^c+3 S [+11]
= S 1^2 0 D> 1^c+2 1 S
--> S 1^2 0 1^c+2 D> 1 S [+3c +17]

12. 0^inf D> 1 0 S --> non-halting translated cycler
by:
0^inf D> 1 0 S
--> 0^inf B> 0 S
--> 0^inf <B 1 S
--> spin out

13. S 0^2 1^a 0 D> 1 0 S --> S 1^2 0 1^a-4 D> 1 0 1^4 S [+4a steps] (if a mod 2 = 1 and a ≥ 4)
by:
S 0^2 1^a 0 D> 1 0 S
--> S 0^2 1^a 0^2 B> 0 S [+1]
--> S 0^2 1^a 0^2 <B 1 S [+2]
--> S 0^2 1^a <B 1^3 S [+4]
--> S 0^2 1^a-1 <C 1^4 S [+5]
--> S 0^2 1^a-2 <E 0 1^4 S [+6]
= S 0^2 1 1^a-3 <E 0 1^4 S
--> S 0^2 1 <E 1^a-3 0 1^4 S [+a +3]
--> S 0^2 <A 1^a-2 0 1^4 S [+a +4]
--> S 0 1 B> 1^a-2 0 1^4 S [+a +5]
--> S 0 1 <C 1^a-2 0 1^4 S [+a +6]
--> S 0 <E 0 1^a-2 0 1^4 S [+a +7]
--> S 1 F> 0 1^a-2 0 1^4 S [+a +8]
--> S 1 0 A> 1^a-2 0 1^4 S [+a +9]
--> S 1 0 <E 1^a-2 0 1^4 S [+a +10]
--> S 1^2 F> 1^a-2 0 1^4 S [+a +11]
--> S 1^2 0 D> 1^a-3 0 1^4 S [+a +12]
= S 1^2 0 D> 1^a-4 1 0 1^4 S
--> S 1^2 0 1^a-4 D> 1 0 1^4 S [+4a]

14. S 0^2 1^3 0 D> 1 0 S --> S 1^2 0 1 Z> 1^4 S [+16 steps]
by:
S 0^2 1^3 0 D> 1 0 S
--> S 0^2 1^3 0^2 B> 0 S [+1]
--> S 0^2 1^3 0^2 <B 1 S [+2]
--> S 0^2 1^3 <B 1^3 S [+4]
--> S 0^2 1^2 <C 1^4 S [+5]
--> S 0^2 1 <E 0 1^4 S [+6]
--> S 0^2 <A 1 0 1^4 S [+7]
--> S 0 1 B> 1 0 1^4 S [+8]
--> S 0 1 <C 1 0 1^4 S [+9]
--> S 0 <E 0 1 0 1^4 S [+10]
--> S 1 F> 0 1 0 1^4 S [+11]
--> S 1 0 A> 1 0 1^4 S [+12]
--> S 1 0 <E 1 0 1^4 S [+13]
--> S 1^2 F> 1 0 1^4 S [+14]
--> S 1^2 0 D> 0 1^4 S [+15]
--> S 1^2 0 1 Z> 1^4 S [+16]

15. S 0 1 0 D> 1 0 1^c S --> S 1^c+4 D> 1 S [+3c +15 steps]
by:
S 0 1 0 D> 1 0 1^c S
--> S 0 1 0^2 B> 0 1^c S [+1]
--> S 0 1 0^2 <B 1^c+1 S [+2]
--> S 0 1 <B 1^c+3 S [+4]
--> S 0 <C 1^c+4 S [+5]
--> S 1 D> 1^c+4 S [+6]
= S 1 D> 1^c+3 1 S [+6]
--> S 1^c+4 D> 1 S [+3c +15]

16. S 0 1^a 0 1^b D> 1 0 S --> S 1 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +2 steps] (if b mod 2 = 1 and a mod 2 = 0 and a ≥ 2)
by:
S 0 1^a 0 1^b D> 1 0 S
--> S 0 1^a 0 1^b 0 B> 0 S [+1]
--> S 0 1^a 0 1^b 0 <B 1 S [+2]
--> S 0 1^a 0 1^b <B 1^2 S [+3]
--> S 0 1^a 0 1^b-1 <C 1^3 S [+4]
--> S 0 1^a 0 1^b-2 <E 0 1^3 S [+5]
--> S 0 1^a 0 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0 1^a 0 <A 1^b-2 0 1^3 S [+b +3]
--> S 0 1^a+1 B> 1^b-2 0 1^3 S [+b +4]
--> S 0 1^a+1 <C 1^b-2 0 1^3 S [+b +5]
--> S 0 1^a <E 0 1^b-2 0 1^3 S [+b +6]
--> S 0 <E 1^a 0 1^b-2 0 1^3 S [+b +a +6]
--> S 1 F> 1^a 0 1^b-2 0 1^3 S [+b +a +7]
--> S 1 0 D> 1^a-1 0 1^b-2 0 1^3 S [+b +a +8]
= S 1 0 D> 1^a-2 1 0 1^b-2 0 1^3 S
--> S 1 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +2]

17. S 0^2 1^b D> 1 0 S --> S 1^2 0 1^b-4 D> 1 0 1^3 S [+4b -1 steps] (if b mod 2 = 1 and b ≥ 5)
by:
S 0^2 1^b D> 1 0 S
--> S 0^2 1^b 0 B> 0 S [+1]
--> S 0^2 1^b 0 <B 1 S [+2]
--> S 0^2 1^b <B 1^2 S [+3]
--> S 0^2 1^b-1 <C 1^3 S [+4]
--> S 0^2 1^b-2 <E 0 1^3 S [+5]
--> S 0^2 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0^2 <A 1^b-2 0 1^3 S [+b +3]
--> S 0 1 B> 1^b-2 0 1^3 S [+b +4]
--> S 0 1 <C 1^b-2 0 1^3 S [+b +5]
--> S 0 <E 0 1^b-2 0 1^3 S [+b +6]
--> S 1 F> 0 1^b-2 0 1^3 S [+b +7]
--> S 1 0 A> 1^b-2 0 1^3 S [+b +8]
--> S 1 0 <E 1^b-2 0 1^3 S [+b +9]
--> S 1^2 F> 1^b-2 0 1^3 S [+b +10]
--> S 1^2 0 D> 1^b-3 0 1^3 S [+b +11]
= S 1^2 0 D> 1^b-4 1 0 1^3 S
--> S 1^2 0 1^b-4 D> 1 0 1^3 S [+4b -1]

18. S 0^2 1^3 D> 1 0 S --> S 1^2 0 1 Z> 1^3 S [+15 steps]
by:
S 0^2 1^3 D> 1 0 S
--> S 0^2 1^3 0 B> 0 S [+1]
--> S 0^2 1^3 0 <B 1 S [+2]
--> S 0^2 1^3 <B 1^2 S [+3]
--> S 0^2 1^2 <C 1^3 S [+4]
--> S 0^2 1 <E 0 1^3 S [+5]
--> S 0^2 <A 1 0 1^3 S [+6]
--> S 0 1 B> 1 0 1^3 S [+7]
--> S 0 1 <C 1 0 1^3 S [+8]
--> S 0 <E 0 1 0 1^3 S [+9]
--> S 1 F> 0 1 0 1^3 S [+10]
--> S 1 0 A> 1 0 1^3 S [+11]
--> S 1 0 <E 1 0 1^3 S [+12]
--> S 1^2 F> 1 0 1^3 S [+13]
--> S 1^2 0 D> 0 1^3 S [+14]
--> S 1^2 0 1 Z> 1^3 S [+15]

19. S 0^2 1^a 0 1^b D> 1 0 S --> S 1^2 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +8 steps] (if b mod 2 = 1 and a mod 2 = 1 and a ≥ 2)
by:
S 0^2 1^a 0 1^b D> 1 0 S
--> S 0^2 1^a 0 1^b 0 B> 0 S [+1]
--> S 0^2 1^a 0 1^b 0 <B 1 S [+2]
--> S 0^2 1^a 0 1^b <B 1^2 S [+3]
--> S 0^2 1^a 0 1^b-1 <C 1^3 S [+4]
--> S 0^2 1^a 0 1^b-2 <E 0 1^3 S [+5]
--> S 0^2 1^a 0 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0^2 1^a 0 <A 1^b-2 0 1^3 S [+b +3]
--> S 0^2 1^a+1 B> 1^b-2 0 1^3 S [+b +4]
--> S 0^2 1^a+1 <C 1^b-2 0 1^3 S [+b +5]
--> S 0^2 1^a <E 0 1^b-2 0 1^3 S [+b +6]
--> S 0^2 1 <E 1^a-1 0 1^b-2 0 1^3 S [b +a +5]
--> S 0^2 <A 1^a 0 1^b-2 0 1^3 S [+b +a +6]
--> S 0 1 B> 1^a 0 1^b-2 0 1^3 S [+b +a +7]
--> S 0 1 <C 1^a 0 1^b-2 0 1^3 S [+b +a +8] 
--> S 0 <E 0 1^a 0 1^b-2 0 1^3 S [+b +a +9]
--> S 1 F> 0 1^a 0 1^b-2 0 1^3 S [+b +a +10]
--> S 1 0 A> 1^a 0 1^b-2 0 1^3 S [+b +a +11]
--> S 1 0 <E 1^a 0 1^b-2 0 1^3 S [+b +a +12]
--> S 1^2 F> 1^a-1 1 0 1^b-2 0 1^3 S [+b +a +13]
--> S 1^2 0 D> 1^a-2 1 0 1^b-2 0 1^3 S [+b +a +14]
--> S 1^2 0 1^a-2 D> 1 0 1^b-2 0 1^3 S [+b +4a +8]

20. S 0^2 1 0 1^b D> 1 0 S --> S 1^2 0 1 Z> 1^b-2 0 1^3 S [+b +16 steps] (if b mod 2 = 1)
by:
S 0^2 1 0 1^b D> 1 0 S
--> S 0^2 1 0 1^b 0 B> 0 S [+1]
--> S 0^2 1 0 1^b 0 <B 1 S [+2]
--> S 0^2 1 0 1^b <B 1^2 S [+3]
--> S 0^2 1 0 1^b-1 <C 1^3 S [+4]
--> S 0^2 1 0 1^b-2 <E 0 1^3 S [+5]
--> S 0^2 1 0 1 <E 1^b-3 0 1^3 S [+b +2]
--> S 0^2 1 0 <A 1^b-2 0 1^3 S [+b +3]
--> S 0^2 1^2 B> 1^b-2 0 1^3 S [+b +4]
--> S 0^2 1^2 <C 1^b-2 0 1^3 S [+b +5]
--> S 0^2 1 <E 0 1^b-2 0 1^3 S [+b +6]
--> S 0^2 <A 1 0 1^b-2 0 1^3 S [+b +7]
--> S 0 1 B> 1 0 1^b-2 0 1^3 S [+b +8]
--> S 0 1 <C 1 0 1^b-2 0 1^3 S [+b +9]
--> S 0 <E 0 1 0 1^b-2 0 1^3 S [+b +10]
--> S 1 F> 0 1 0 1^b-2 0 1^3 S [+b +11]
--> S 1 0 A> 1 0 1^b-2 0 1^3 S [+b +12]
--> S 1 0 <E 1 0 1^b-2 0 1^3 S [+b +13]
--> S 1^2 F> 1 0 1^b-2 0 1^3 S [+b +14]
--> S 1^2 0 D> 0 1^b-2 0 1^3 S [+b +15]
--> S 1^2 0 1 Z> 1^b-2 0 1^3 S [+b +16]

21. S 0 1^a 0 1 D> 1 0 1^c S --> S 0 1^a+c+3 D> 1 S [+3c +11 steps]
by:
S 0 1^a 0 1 D> 1 0 1^c S
--> S 0 1^a 0 1 0 B> 0 1^c S [+1]
--> S 0 1^a 0 1 0 <B 1^c+1 S [+2]
--> S 0 1^a 0 1 <B 1^c+2 S [+3]
--> S 0 1^a 0 <C 1^c+3 S [+4]
--> S 0 1^a+1 D> 1^c+2 1 S [+5]
--> S 0 1^a+c+3 D> 1 S [+3c +11]

Functions

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...) by rule 7
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...) by rule 9
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...) by rule 10
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...) by rule 11
         a = 0: A(0, 0, c, ...) --> spin out by rule 12
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...) by rule 13
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ... by rule 14
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...) by rule 15
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...) by rule 16
         a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...) by rule 17
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ... by rule 18
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...) by rule 19
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ... by rule 20
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...) by rule 21

Rules 12, 18 and 20 are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.

Accelerated rules:

R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)

A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) by rule 17 [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) by rule 16 [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) by rule 15 [+16k +10]

A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1

A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) by rule 17 [8k^2 +18k -49]
--> A(0, c+6k-4, ...) by rule 21 [+8k^2 +36k + 3c -65]

Using the accelerated rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) by rule 8
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...) by rule 9
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...) by rule 10
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...) by rule 11
         a = 0: unreachable
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...) by rule 13
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ... by rule 14
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...) by rule 15
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...) by rule 16
         a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...) by rule 17
            b = 3: unreachable
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...) by rule 19
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...) by rule 21

Trajectory

S=0: 0^inf <A 0^inf
S=1: 0^inf 1 B> 0^inf
S=2: 0^inf 1 <B 1 0^inf
S=3: 0^inf <C 1^2 0^inf
S=4: 0^inf 1 D> 1^2 0^inf
S=7: 0^inf 1^2 D> 1 0^inf = A(0, 2, 0)
So this TM reaches configuration A(0, 2, 0) after 7 steps.

Permutations

Starting in state B

S=0: 0^inf <B 0^inf
--> spin out

Starting in state C

S=0: 0^inf <C 0^inf
S=1: 0^inf 1 D> 0^inf
S=2: 0^inf 1^2 Z> 0^inf

Starting in state D

S=0: 0^inf <D 0^inf
S=1: 0^inf 1 Z> 0^inf

Starting in state E

S=0: 0^inf <E 0^inf
S=1: 0^inf 1 F> 0^inf
S=2: 0^inf 1 0 A> 0^inf
S=3: 0^inf 1 0 1 B> 0^inf
S=4: 0^inf 1 0 1 <B 1 0^inf
S=5: 0^inf 1 0 <C 1^2 0^inf
S=6: 0^inf 1^2 D> 1^2 0^inf
S=9: 0^inf 1^3 D> 1 0^inf = A(0, 3, 0)
--> Reaches configuration A(0, 3, 0) after 9 steps.
S=24: 0^inf 1^2 0 1 Z> 1^3 0^inf

Starting in state F

S=0: 0^inf <F 0^inf
S=1: 0^inf A> 0^inf
--> Equivalent to starting in state A, but started one step earlier.