|
|
Line 71: |
Line 71: |
|
| |
|
| <math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> | | <math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> |
| | |
| | or, for an even more precise upper bound: |
| | |
| | <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> |
| | |
| | <math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> |
| ==Lower bound on f^g^n1(n0)(0)== | | ==Lower bound on f^g^n1(n0)(0)== |
| <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> |
Line 102: |
Line 108: |
| <math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> | | <math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> |
|
| |
|
| <math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{34}}})</math> | | <math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> |
| | |
| | or, for an even more precise upper bound: |
| | |
| | <math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> |
| | |
| | <math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math> |
| | |
| | <math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math> |
| ==Lower bound on Σ== | | ==Lower bound on Σ== |
| Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> |
Line 127: |
Line 141: |
|
| |
|
| Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math> | | Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math> |
| | |
| | or, for an even more precise upper bound: |
| | |
| | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math> |
| | |
| | Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math> |
| =General bound on Σ= | | =General bound on Σ= |
| <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | | <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < '''Σ''' < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> |
|
| |
|
| More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math> | | More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> |
|
| |
|
| Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> | | Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> |
Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD
(bbch)
Better lower bound for BB(4,3)
Definitions
Σ =
Lower bound on f^n(0)
Upper bound
as
Lower bound on g^k(n)
Upper bound
Lower bound on g^n1(n0)
; Note that
Upper bound
or, for a more precise upper bound:
or, for an even more precise upper bound:
Lower bound on f^g^n1(n0)(0)
and
or, for a more precise lower bound:
Upper bound
and
or, for a more precise upper bound:
and
or, for an even more precise upper bound:
and
Lower bound on Σ
Σ =
Σ >
or, for a more precise lower bound:
Σ =
Σ >
Upper bound
Σ =
Σ <
or, for a more precise upper bound:
Σ =
Σ <
or, for an even more precise upper bound:
Σ =
Σ <
General bound on Σ
< Σ <
More precisely:
< Σ <
Even more precisely:
< Σ <