User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Added upper bound)
(Added an even more precise upper bound)
 
(2 intermediate revisions by the same user not shown)
Line 62: Line 62:
'''Upper bound'''
'''Upper bound'''


<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>


<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
or, for an even more precise upper bound:
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math>
==Lower bound on f^g^n1(n0)(0)==
==Lower bound on f^g^n1(n0)(0)==
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
Line 76: Line 88:
or, for a more precise lower bound:
or, for a more precise lower bound:


<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math>


<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6 => (2  \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2  \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


'''Upper bound'''
'''Upper bound'''
Line 89: Line 101:


<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
or, for an even more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math>
==Lower bound on Σ==
==Lower bound on Σ==
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Line 94: Line 122:
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>


or, more precisely:
or, for a more precise lower bound:


Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


'''Upper bound'''
'''Upper bound'''
Line 107: Line 135:


Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
or, for a more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
or, for an even more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math>
=General bound on Σ=
=General bound on Σ=
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < '''Σ''' < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
 
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>


More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math>
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>

Latest revision as of 15:08, 18 August 2025

Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

Better lower bound for BB(4,3)

Definitions

Σ =

Lower bound on f^n(0)

Upper bound

as

Lower bound on g^k(n)

Upper bound

Lower bound on g^n1(n0)

 ; Note that

Upper bound

or, for a more precise upper bound:

or, for an even more precise upper bound:

Lower bound on f^g^n1(n0)(0)

and

or, for a more precise lower bound:

Upper bound

and

or, for a more precise upper bound:

and

or, for an even more precise upper bound:

and

Lower bound on Σ

Σ =

Σ >

or, for a more precise lower bound:

Σ =

Σ >

Upper bound

Σ =

Σ <

or, for a more precise upper bound:

Σ =

Σ <

or, for an even more precise upper bound:

Σ =

Σ <

General bound on Σ

< Σ <

More precisely: < Σ <

Even more precisely: < Σ <