User:Polygon/Better lower bound for BB(4,3): Difference between revisions
Jump to navigation
Jump to search
(Added upper bound) |
(Added an even more precise upper bound) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 62: | Line 62: | ||
'''Upper bound''' | '''Upper bound''' | ||
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> | <math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> | ||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> | <math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> | ||
or, for a more precise upper bound: | |||
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> | |||
or, for an even more precise upper bound: | |||
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> | |||
==Lower bound on f^g^n1(n0)(0)== | ==Lower bound on f^g^n1(n0)(0)== | ||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | ||
Line 76: | Line 88: | ||
or, for a more precise lower bound: | or, for a more precise lower bound: | ||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}- | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> | ||
<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}- | <math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | ||
<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2} | <math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | ||
'''Upper bound''' | '''Upper bound''' | ||
Line 89: | Line 101: | ||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math> | <math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math> | ||
or, for a more precise upper bound: | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> | |||
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> | |||
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> | |||
or, for an even more precise upper bound: | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> | |||
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math> | |||
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math> | |||
==Lower bound on Σ== | ==Lower bound on Σ== | ||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | ||
Line 94: | Line 122: | ||
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | ||
or, more | or, for a more precise lower bound: | ||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2} | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | ||
Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2} | Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | ||
'''Upper bound''' | '''Upper bound''' | ||
Line 107: | Line 135: | ||
Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | ||
or, for a more precise upper bound: | |||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math> | |||
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math> | |||
or, for an even more precise upper bound: | |||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math> | |||
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math> | |||
=General bound on Σ= | =General bound on Σ= | ||
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < '''Σ''' < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | ||
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> | |||
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> |
Latest revision as of 15:08, 18 August 2025
Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD
(bbch)
Better lower bound for BB(4,3)
Definitions
Σ =
Lower bound on f^n(0)
Upper bound
as
Lower bound on g^k(n)
Upper bound
Lower bound on g^n1(n0)
; Note that
Upper bound
or, for a more precise upper bound:
or, for an even more precise upper bound:
Lower bound on f^g^n1(n0)(0)
and
or, for a more precise lower bound:
Upper bound
and
or, for a more precise upper bound:
and
or, for an even more precise upper bound:
and
Lower bound on Σ
Σ =
Σ >
or, for a more precise lower bound:
Σ =
Σ >
Upper bound
Σ =
Σ <
or, for a more precise upper bound:
Σ =
Σ <
or, for an even more precise upper bound:
Σ =
Σ <
General bound on Σ
< Σ <
More precisely: < Σ <
Even more precisely: < Σ <