User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Fixed weird headings)
(Added an even more precise upper bound)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Machine: {{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
=Better lower bound for BB(4,3)=
=Better lower bound for BB(4,3)=
==Definitions==
==Definitions==
Line 20: Line 21:


<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
'''Upper bound'''
<math>f_{u}(n)=2^{2^{2^{n}}}; f_{u}(0)=2^{2^{2}}; f_{u}^{0}(0) = 1</math>
<math>f_{u}(n) > f(n)</math> as <math>2^{n} > n+1</math>
<math>f_{u}^{k}(0) = (2 \uparrow)^{3}f_{u}^{k-1}(0)</math>
<math>f_{u}^{2}(0) = f_{u}(2^{2^{2}}) = 2^{2^{2^{2^{2^{2}}}}} => (2 \uparrow)^{6}1</math>
<math>f_{u}^{k}(0) = (2 \uparrow)^{3k}1 = 2 \uparrow\uparrow 3k; f_{u}(n) > f(n) => 2 \uparrow\uparrow 3k > f(n)</math>
<math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
==Lower bound on g^k(n)==
==Lower bound on g^k(n)==
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>
Line 29: Line 44:
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>


'''Upper bound'''
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} < \frac {5 \times 2^{2^{(2 \uparrow\uparrow 3n)+1}+2}-8}{9} < 5 \times 2^{2^{(2 \uparrow\uparrow 3n)+1}+2} < 2 \uparrow\uparrow (3n+3)</math>
<math>g^{2}(n) < 2 \uparrow\uparrow (3 \times (2\uparrow\uparrow (3n+3))+3) < 2 \uparrow\uparrow 2 \uparrow\uparrow (3n+4)</math>
<math>g^{k}(n) < 2 \uparrow\uparrow (3 \times (g^{k-1}(n))+3) < 2 \uparrow\uparrow 2 \uparrow g^{k-1}(n)</math>
<math>g^{k}(n) < (2 \uparrow\uparrow)^{k}(3n+k+2)</math>
==Lower bound on g^n1(n0)==
==Lower bound on g^n1(n0)==
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>
Line 35: Line 59:


<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
'''Upper bound'''
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
or, for an even more precise upper bound:
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math>
==Lower bound on f^g^n1(n0)(0)==
==Lower bound on f^g^n1(n0)(0)==
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
Line 43: Line 85:


<math>f^{g^{n1}(n0)}(0) > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
<math>f^{g^{n1}(n0)}(0) > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
or, for a more precise lower bound:
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math>
<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2  \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
'''Upper bound'''
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}8 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
or, for an even more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math>
==Lower bound on Σ==
==Lower bound on Σ==
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>


Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
or, for a more precise lower bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
'''Upper bound'''
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 5 \times 2^{2^{((2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}65536 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2 \uparrow\uparrow 4 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-1}4</math>
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-1}4 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-1}2 \uparrow\uparrow 2 => (2 \uparrow\uparrow)^{2^{2^{32}+1}}2 => (2 \uparrow\uparrow)^{2^{2^{32}+1}}2 \uparrow\uparrow 1 => (2 \uparrow\uparrow)^{2^{2^{32}+1}+1}1 => 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
or, for a more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
or, for an even more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math>
=General bound on Σ=
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < '''Σ''' < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>

Latest revision as of 15:08, 18 August 2025

Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

Better lower bound for BB(4,3)

Definitions

Σ =

Lower bound on f^n(0)

Upper bound

as

Lower bound on g^k(n)

Upper bound

Lower bound on g^n1(n0)

 ; Note that

Upper bound

or, for a more precise upper bound:

or, for an even more precise upper bound:

Lower bound on f^g^n1(n0)(0)

and

or, for a more precise lower bound:

Upper bound

and

or, for a more precise upper bound:

and

or, for an even more precise upper bound:

and

Lower bound on Σ

Σ =

Σ >

or, for a more precise lower bound:

Σ =

Σ >

Upper bound

Σ =

Σ <

or, for a more precise upper bound:

Σ =

Σ <

or, for an even more precise upper bound:

Σ =

Σ <

General bound on Σ

< Σ <

More precisely: < Σ <

Even more precisely: < Σ <