User:Polygon/Better lower bound for BB(4,3): Difference between revisions
Jump to navigation
Jump to search
(Fixed weird headings) |
(Added an even more precise upper bound) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Machine: {{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}} | |||
=Better lower bound for BB(4,3)= | =Better lower bound for BB(4,3)= | ||
==Definitions== | ==Definitions== | ||
Line 20: | Line 21: | ||
<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math> | <math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math> | ||
'''Upper bound''' | |||
<math>f_{u}(n)=2^{2^{2^{n}}}; f_{u}(0)=2^{2^{2}}; f_{u}^{0}(0) = 1</math> | |||
<math>f_{u}(n) > f(n)</math> as <math>2^{n} > n+1</math> | |||
<math>f_{u}^{k}(0) = (2 \uparrow)^{3}f_{u}^{k-1}(0)</math> | |||
<math>f_{u}^{2}(0) = f_{u}(2^{2^{2}}) = 2^{2^{2^{2^{2^{2}}}}} => (2 \uparrow)^{6}1</math> | |||
<math>f_{u}^{k}(0) = (2 \uparrow)^{3k}1 = 2 \uparrow\uparrow 3k; f_{u}(n) > f(n) => 2 \uparrow\uparrow 3k > f(n)</math> | |||
<math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> | |||
==Lower bound on g^k(n)== | ==Lower bound on g^k(n)== | ||
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math> | <math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math> | ||
Line 29: | Line 44: | ||
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math> | <math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math> | ||
'''Upper bound''' | |||
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} < \frac {5 \times 2^{2^{(2 \uparrow\uparrow 3n)+1}+2}-8}{9} < 5 \times 2^{2^{(2 \uparrow\uparrow 3n)+1}+2} < 2 \uparrow\uparrow (3n+3)</math> | |||
<math>g^{2}(n) < 2 \uparrow\uparrow (3 \times (2\uparrow\uparrow (3n+3))+3) < 2 \uparrow\uparrow 2 \uparrow\uparrow (3n+4)</math> | |||
<math>g^{k}(n) < 2 \uparrow\uparrow (3 \times (g^{k-1}(n))+3) < 2 \uparrow\uparrow 2 \uparrow g^{k-1}(n)</math> | |||
<math>g^{k}(n) < (2 \uparrow\uparrow)^{k}(3n+k+2)</math> | |||
==Lower bound on g^n1(n0)== | ==Lower bound on g^n1(n0)== | ||
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math> | <math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math> | ||
Line 35: | Line 59: | ||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> | ||
'''Upper bound''' | |||
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> | |||
or, for a more precise upper bound: | |||
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> | |||
or, for an even more precise upper bound: | |||
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> | |||
==Lower bound on f^g^n1(n0)(0)== | ==Lower bound on f^g^n1(n0)(0)== | ||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | ||
Line 43: | Line 85: | ||
<math>f^{g^{n1}(n0)}(0) > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | <math>f^{g^{n1}(n0)}(0) > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | ||
or, for a more precise lower bound: | |||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> | |||
<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | |||
<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | |||
'''Upper bound''' | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> | |||
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}8 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math> | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math> | |||
or, for a more precise upper bound: | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> | |||
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> | |||
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math> | |||
or, for an even more precise upper bound: | |||
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math> | |||
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math> | |||
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math> | |||
==Lower bound on Σ== | ==Lower bound on Σ== | ||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | ||
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> | ||
or, for a more precise lower bound: | |||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | |||
Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> | |||
'''Upper bound''' | |||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 5 \times 2^{2^{((2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}65536 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2 \uparrow\uparrow 4 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-1}4</math> | |||
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-1}4 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-1}2 \uparrow\uparrow 2 => (2 \uparrow\uparrow)^{2^{2^{32}+1}}2 => (2 \uparrow\uparrow)^{2^{2^{32}+1}}2 \uparrow\uparrow 1 => (2 \uparrow\uparrow)^{2^{2^{32}+1}+1}1 => 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | |||
Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | |||
or, for a more precise upper bound: | |||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math> | |||
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math> | |||
or, for an even more precise upper bound: | |||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math> | |||
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math> | |||
=General bound on Σ= | |||
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < '''Σ''' < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math> | |||
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> | |||
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math> |
Latest revision as of 15:08, 18 August 2025
Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD
(bbch)
Better lower bound for BB(4,3)
Definitions
Σ =
Lower bound on f^n(0)
Upper bound
as
Lower bound on g^k(n)
Upper bound
Lower bound on g^n1(n0)
; Note that
Upper bound
or, for a more precise upper bound:
or, for an even more precise upper bound:
Lower bound on f^g^n1(n0)(0)
and
or, for a more precise lower bound:
Upper bound
and
or, for a more precise upper bound:
and
or, for an even more precise upper bound:
and
Lower bound on Σ
Σ =
Σ >
or, for a more precise lower bound:
Σ =
Σ >
Upper bound
Σ =
Σ <
or, for a more precise upper bound:
Σ =
Σ <
or, for an even more precise upper bound:
Σ =
Σ <
General bound on Σ
< Σ <
More precisely: < Σ <
Even more precisely: < Σ <