User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Created page for a slightly bigger lower bound for BB(4,3))
 
(Added an even more precise upper bound)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
Machine: {{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
=Better lower bound for BB(4,3)=
=Better lower bound for BB(4,3)=
==Definitions==
==Definitions==
Line 10: Line 11:


Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math>
==Lower bound on <math>f^{n}(0)</math>==
==Lower bound on f^n(0)==
<math>f(n) = 2^{2^{n+1}}</math>
<math>f(n) = 2^{2^{n+1}}</math>


Line 20: Line 21:


<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
==Lower bound on <math>g^{k}(n)</math>==
 
'''Upper bound'''
 
<math>f_{u}(n)=2^{2^{2^{n}}}; f_{u}(0)=2^{2^{2}}; f_{u}^{0}(0) = 1</math>
 
<math>f_{u}(n) > f(n)</math> as <math>2^{n} > n+1</math>
 
<math>f_{u}^{k}(0) = (2 \uparrow)^{3}f_{u}^{k-1}(0)</math>
 
<math>f_{u}^{2}(0) = f_{u}(2^{2^{2}}) = 2^{2^{2^{2^{2^{2}}}}} => (2 \uparrow)^{6}1</math>
 
<math>f_{u}^{k}(0) = (2 \uparrow)^{3k}1 = 2 \uparrow\uparrow 3k; f_{u}(n) > f(n) => 2 \uparrow\uparrow 3k > f(n)</math>
 
<math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
==Lower bound on g^k(n)==
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>


Line 29: Line 44:
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>


==Lower bound on <math>g^{n1}(n0)</math>==
'''Upper bound'''
 
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} < \frac {5 \times 2^{2^{(2 \uparrow\uparrow 3n)+1}+2}-8}{9} < 5 \times 2^{2^{(2 \uparrow\uparrow 3n)+1}+2} < 2 \uparrow\uparrow (3n+3)</math>
 
<math>g^{2}(n) < 2 \uparrow\uparrow (3 \times (2\uparrow\uparrow (3n+3))+3) < 2 \uparrow\uparrow 2 \uparrow\uparrow (3n+4)</math>
 
<math>g^{k}(n) < 2 \uparrow\uparrow (3 \times (g^{k-1}(n))+3) < 2 \uparrow\uparrow 2 \uparrow g^{k-1}(n)</math>
 
<math>g^{k}(n) < (2 \uparrow\uparrow)^{k}(3n+k+2)</math>
==Lower bound on g^n1(n0)==
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>


Line 35: Line 59:


<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
==Lower bound on <math>f^{g^{n1}(n0)}(0)</math>==
 
'''Upper bound'''
 
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
 
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
 
or, for a more precise upper bound:
 
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
 
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
 
or, for an even more precise upper bound:
 
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math>
 
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math>
==Lower bound on f^g^n1(n0)(0)==
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>


Line 43: Line 85:


<math>f^{g^{n1}(n0)}(0) > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
<math>f^{g^{n1}(n0)}(0) > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
or, for a more precise lower bound:
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math>
<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2  \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
'''Upper bound'''
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}8 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
or, for an even more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{32}+2}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)</math>
==Lower bound on Σ==
==Lower bound on Σ==
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>


Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
or, for a more precise lower bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>
'''Upper bound'''
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 5 \times 2^{2^{((2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}65536 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2 \uparrow\uparrow 4 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-1}4</math>
<math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-1}4 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-1}2 \uparrow\uparrow 2 => (2 \uparrow\uparrow)^{2^{2^{32}+1}}2 => (2 \uparrow\uparrow)^{2^{2^{32}+1}}2 \uparrow\uparrow 1 => (2 \uparrow\uparrow)^{2^{2^{32}+1}+1}1 => 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
or, for a more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
or, for an even more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2)</math>
=General bound on Σ=
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < '''Σ''' < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < '''Σ''' < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{32}+2}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>

Latest revision as of 15:08, 18 August 2025

Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

Better lower bound for BB(4,3)

Definitions

Σ =

Lower bound on f^n(0)

Upper bound

as

Lower bound on g^k(n)

Upper bound

Lower bound on g^n1(n0)

 ; Note that

Upper bound

or, for a more precise upper bound:

or, for an even more precise upper bound:

Lower bound on f^g^n1(n0)(0)

and

or, for a more precise lower bound:

Upper bound

and

or, for a more precise upper bound:

and

or, for an even more precise upper bound:

and

Lower bound on Σ

Σ =

Σ >

or, for a more precise lower bound:

Σ =

Σ >

Upper bound

Σ =

Σ <

or, for a more precise upper bound:

Σ =

Σ <

or, for an even more precise upper bound:

Σ =

Σ <

General bound on Σ

< Σ <

More precisely: < Σ <

Even more precisely: < Σ <