1RB1RZ 0RC0RE 1LD1LA 1LC0LG 0RF1LF 0RD1LF 1LB0LE: Difference between revisions
Jump to navigation
Jump to search
(Added "halt" to bbch-link) |
(→Analysis by Shawn Ligocki: Fixed presumed typo) |
||
Line 37: | Line 37: | ||
B(b, 288, 0) b = f1(f2^{72}(a)) = f1( f2^{125}(4) ) | B(b, 288, 0) b = f1(f2^{72}(a)) = f1( f2^{125}(4) ) | ||
B(c, 384, 0) c = f1(f2^{96}(b)) | B(c, 384, 0) c = f1(f2^{96}(b)) | ||
B(d, 512, 0) d = f1(f2^{128}( | B(d, 512, 0) d = f1(f2^{128}(c)) | ||
Halt(2e + 692) e = f2^{170}(d) | Halt(2e + 692) e = f2^{170}(d) | ||
</pre> | </pre> |
Latest revision as of 10:42, 18 August 2025
1RB1RZ_0RC0RE_1LD1LA_1LC0LG_0RF1LF_0RD1LF_1LB0LE
(bbch) is a tetrational halting BB(7) TM with sigma score over . It was found by Andrew Ducharme on 6 Jun 2025 (Discord link).
Analysis by Shawn Ligocki
This TM goes through 2 phases: Phase A and Phase B.
A(a, b) = 0^inf <F 10 1^a 00 1^b 0^inf B(a, b, c, d, e) = 0^inf <F 1^2a+1 00 1^2b 0^2c+1 1^d 00 1^e 0^inf Shorthand: A(a) = A(a, 0) B(b, d, e) = B(0, b, 0, d, e) f1(x) = 2x+2 f2(x) = f1^x(4) = 6 2^b - 2 Phase A: Start --(13)--> A(1) A(3k) -> B(4, 4k-3, 4) A(3k+1) -> A(4k+4) A(3k+2) -> A(4k+6) Phase B: B(b, 3k, e) -> B(f1(f2^k(b)), 4k+e, 0) B(b, 3k+1, e) -> B(f2^{k+1}(b), 4k+e+4, 0) B(b, 3k+2, e) -> Halt(2 f2^k(b) + 4k + e + 12)
The trajectory is:
Phase A: 1 4 8 14 22 32 46 64 88 120 Phase B: B(4, 157, 4) B(a, 216, 0) a = f2^{53}(4) B(b, 288, 0) b = f1(f2^{72}(a)) = f1( f2^{125}(4) ) B(c, 384, 0) c = f1(f2^{96}(b)) B(d, 512, 0) d = f1(f2^{128}(c)) Halt(2e + 692) e = f2^{170}(d)
If we ignore the f1
calls and note that then the sigma score at halt is larger than .
It gets very lucky in Phase A: resetting 9 times before hitting a multiple of 3 and a little bit lucky in Phase B: resetting 4 times before hitting a remainder 2 factor.