|
|
Line 80: |
Line 80: |
|
| |
|
| This bound is pretty tight: <math>\sigma < 2 \uparrow^{11} 2 \uparrow^{11} 4 = 2 \uparrow^{12} 4</math>. | | This bound is pretty tight: <math>\sigma < 2 \uparrow^{11} 2 \uparrow^{11} 4 = 2 \uparrow^{12} 4</math>. |
| | [[Category:BB(7)]] |
Latest revision as of 10:05, 28 September 2025
1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF
(bbch) is the current BB(7) champion, running for over
steps before it halts. It was discovered by Pavel Kropitz on 10 May 2025 (Discord link) and analyzed by Shawn Ligocki (here) on 13 May 2025.
Analysis by Shawn Ligocki
Consider general configurations matching the regex:

Low level rules
01 1 01^n 0011100 A> 00 --> 1 01^n+2 0011100 A>
01^3 11 01^n 0011100 A> 0^6 --> 1 01^n+5 1 01 0011100 A>
01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6 --> 1 01^n+6 (1 01)^k 11 01 0011100 A>
011 (1 01)^k 11 01^n 0011100 A> 0^2 --> 1 Z> 111 01^n+1 00 101^k+2
Mid level rules
Let

and let B(a; [x]*k, y, ...)
=
(In other words, [x]*k
represents k repeats of the value x in a config).
then
B(a; b+1, ...) -> B(2a+4; b, ...)
B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...)
B(a; [0]*k) -> Halt(3a + 2k + 9)
Start at step 8178: B(2, [1]*12)
High level rule
Let

then

Bound
Let

then

and

and so this TM halts with a sigma score of
Note that
and so for
,

and so this TM halts with sigma score
.
This bound is pretty tight:
.