Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Working on a new definition
MrSolis (talk | contribs)
m :D
 
(5 intermediate revisions by 4 users not shown)
Line 10: Line 10:
== Examples ==
== Examples ==


=== BB(5,2) Champion ===
=== 5-state busy beaver winner ===
Consider the [[5-state busy beaver winner|BB(5,2) Champion]] and the generalized configuration:
Consider the [[5-state busy beaver winner]] and the generalized configuration:


<math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that:
<math display="block">M(n) = 0^\infty \; \textrm{<}\text{A} \; 1^n \; 0^\infty</math>Pascal Michel showed that:


<math display="block">\begin{array}{lcl}
<math display="block">\begin{array}{lcl}
   0^\infty \; \textrm{<A} \; 0^\infty & = & M(0) \\
   0^\infty \; \textrm{<}\textrm{A} \; 0^\infty & = & M(0) \\
   M(3k)  & \xrightarrow{5 k^2 + 19 k + 15} & M(5k+6) \\
   M(3k)  & \xrightarrow{5k^2+19k+15} & M(5k+6) \\
   M(3k+1) & \xrightarrow{5 k^2 + 25 k + 27} & M(5k+9) \\
   M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\
   M(3k+2) & \xrightarrow{6k +12} & 0^\infty \;\; 1 \;\; \textrm{H>} \;\; 01 \;\; {(001)}^{k+1} \;\; 1 \;\; 0^\infty  \\
   M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty  \\
\end{array}</math>
\end{array}</math>


Line 25: Line 25:


=== Hydra ===
=== Hydra ===
Consider [[Hydra]] (a [[Cryptids|Cryptid]]) and the generalized configuration:
Consider [[Hydra]] and the generalized configuration:


<math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
<math display="block">C(a, b) = 0^\infty\;\textrm{<}\textrm{A}\;2\;0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
Daniel Yuan showed that:<math display="block">\begin{array}{l}
Daniel Yuan showed that:<math display="block">\begin{array}{l}
   \\
   \\
   0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\
   0^\infty \; \textrm{A}\textrm{>} \; 0^\infty & & \xrightarrow{20} & C(3, 0) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & b+1) & \to & C(3n,   & b) \\
   C(2n,  & b+1) & \to & C(3n,b) \\
   C(2n+1, & b)  & \to & C(3n+1, & b+2) \\
   C(2n+1, & b)  & \to & C(3n+1,b+2) \\
\end{array}</math>
\end{array}</math>


Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.
Where <math>\text{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.
 
Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l}
  h(2n)  & = & 3n  \\
  h(2n+1) & = & 3n+1 \\
\end{array}</math>starting from 3:


Starting from <math>C(3, 0)</math>, this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function
<math display="block">\begin{array}{l}
  H(2n)  & = & 3n &\text{(even transition)} \\
  H(2n+1) & = & 3n+1&\text{(odd transition)} \\
\end{array}</math>
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
  \\
\vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots \\
  3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots \\
\end{array}
\end{array}
</math>
</math>
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>
=== Exponential Collatz ===
=== Exponential Collatz ===
Consider the current [[1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|BB(6,2) Champion]] (discovered by Pavel Kropitz in May 2022) and consider the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
Consider the machine {{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}, discovered by Pavel Kropitz in May 2022, and the general configuration:<math display="block">K(n):=0^\infty\;1\;0^n\;11\;0^5\;\textrm{C}\textrm{>}\;0^\infty</math>Shawn Ligocki showed that:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
   \\
   \\
   0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\
   0^\infty\;\textrm{A}\textrm{>}\;0^\infty&\xrightarrow{45}&K(5) \\
   K(4k)  & \to & \text{Halt}(\frac{3^{k+3} - 11}{2}) \\
   K(4k)  & \to & \operatorname{Halt}\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+1) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
   K(4k+3) & \to & K\Bigl(\frac{3^{k+3} +  1}{2}\Bigr) \\
\end{array}</math>
\end{array}</math>


Line 65: Line 62:


Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
== References ==
== References ==
<references />
<references />
[[Category:Zoology]]
[[Category:Zoology]]

Latest revision as of 23:00, 7 October 2025

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:c(2k)=kc(2k+1)=3k+2

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Examples

5-state busy beaver winner

Consider the 5-state busy beaver winner and the generalized configuration:

M(n)=0<A1n0Pascal Michel showed that:

0<A0=M(0)M(3k)5k2+19k+15M(5k+6)M(3k+1)5k2+25k+27M(5k+9)M(3k+2)6k+1201Z>01(001)k+110

Starting on a blank tape M(0), these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra and the generalized configuration:

C(a,b)=0<A203(a2)3b20 Daniel Yuan showed that:0A>020C(3,0)C(2n,0)Halt(9n6)C(2n,b+1)C(3n,b)C(2n+1,b)C(3n+1,b+2)

Where Halt(n) is a halting configuration with n non-zero symbols on the tape.

Starting from C(3,0), this simulates a pseudo-random walk along the b parameter, increasing it by 2 every time a is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function H(2n)=3n(even transition)H(2n+1)=3n+1(odd transition) to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below: 0..3O4E6E9O13O19O28E42E63O

Exponential Collatz

Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:K(n):=010n1105C>0Shawn Ligocki showed that: 0A>045K(5)K(4k)Halt(3k+3112)K(4k+1)K(3k+3112)K(4k+2)K(3k+3112)K(4k+3)K(3k+3+12)

Demonstrating Collatz-like behavior with exponential piecewise component functions.

Starting from config K(5), these rules iterate 15 times before reaching the halt config leaving over 1015 non-zero symbols on the tape.[3]

References