Champions: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
m Reverted edits by Jacobzheng (talk) to last revision by Elexunix
Tag: Rollback
Racheline (talk | contribs)
added BB(20), BB(21) and BB(3,5) bounds, champions for >3 symbols and made minor formatting changes for consistency
Line 11: Line 11:
|-
|-
|[[BB(2)]]
|[[BB(2)]]
|6
|<math> 6 </math>
|{{TM|1RB1LB_1LA1RZ|halt}} {{TM|1RB0LB_1LA1RZ|halt}} {{TM|1RB1RZ_1LB1LA|halt}} {{TM|1RB1RZ_0LB1LA|halt}} {{TM|0RB1RZ_1LA1RB|halt}}
|{{TM|1RB1LB_1LA1RZ|halt}} {{TM|1RB0LB_1LA1RZ|halt}} {{TM|1RB1RZ_1LB1LA|halt}} {{TM|1RB1RZ_0LB1LA|halt}} {{TM|0RB1RZ_1LA1RB|halt}}
|Discovered and proven by hand by Tibor Radó
|Discovered and proven by hand by Tibor Radó
|-
|-
|[[BB(3)]]
|[[BB(3)]]
|21
|<math> 21 </math>
|{{TM|1RB1RZ_1LB0RC_1LC1LA|halt}}
|{{TM|1RB1RZ_1LB0RC_1LC1LA|halt}}
|Proven by Shen Lin
|Proven by Shen Lin
|-
|-
|[[BB(4)]]
|[[BB(4)]]
|107
|<math> 107 </math>
|{{TM|1RB1LB_1LA0LC_1RZ1LD_1RD0RA|halt}}
|{{TM|1RB1LB_1LA0LC_1RZ1LD_1RD0RA|halt}}
|Discovered and proven by Allen Brady
|Discovered and proven by Allen Brady
|-
|-
|[[BB(5)]]
|[[BB(5)]]
|47,176,870
|<math> 47,176,870 </math>
|{{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}
|{{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}
|Discovered by Heiner Marxen & Jürgen Buntrock in 1989
|Discovered by Heiner Marxen & Jürgen Buntrock in 1989
Line 32: Line 32:
|-
|-
|[[BB(6)]]
|[[BB(6)]]
|<math>> 10 \uparrow\uparrow 15</math>
|<math> > 10 \uparrow\uparrow 15 </math>
|{{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}
|{{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}
|Discovered by Pavel Kropitz in 2022
|Discovered by Pavel Kropitz in 2022
Line 85: Line 85:
|
|
|Designed by  Daniel Nagaj in 2021<ref>Shawn Ligocki. 2022. "BB(16) > Graham's Number". https://www.sligocki.com/2022/07/11/bb-16-graham.html</ref>
|Designed by  Daniel Nagaj in 2021<ref>Shawn Ligocki. 2022. "BB(16) > Graham's Number". https://www.sligocki.com/2022/07/11/bb-16-graham.html</ref>
|-
|BB(20)
|<math> > f_{\omega + 2}^2(21) </math>
|
|Discovered by Racheline in 2024
|-
|BB(21)
|<math> > f_{\omega^2}^2(4 \uparrow\uparrow 341) </math>
|
|Discovered by Racheline in 2024
|-
|-
|BB(51)
|BB(51)
|<math> > f_{\epsilon_0 + 1}(8) </math>
|<math> > f_{\epsilon_0 + 1}(8) </math>
|
|
|Discovered by Racheline in 2024
|Designed by Racheline in 2024
|}
|}


Line 102: Line 112:
|-
|-
|[[BB(2,3)]]
|[[BB(2,3)]]
|38
|<math> 38 </math>
|{{TM|1RB2LB1RZ_2LA2RB1LB|halt}}
|{{TM|1RB2LB1RZ_2LA2RB1LB|halt}}
|
|
|-
|-
|[[BB(3,3)]]
|[[BB(3,3)]]
|<math> > 10^{17}</math>
|<math> > 10^{17} </math>
|{{TM|0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC|halt}}
|{{TM|0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC|halt}}
|-
|-
Line 125: Line 135:
|-
|-
|BB(2,4)
|BB(2,4)
|<math>\geq3,932,964</math>
|<math> 3,932,964 </math>
|
|{{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}
|
|
|-
|-
|BB(3,4)
|BB(3,4)
|<math>>2\uparrow^{15}5</math>
|<math> > 2 \uparrow^{15} 5 </math>
|
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|
|
|}
|}
Line 144: Line 154:
|-
|-
|BB(2,5)
|BB(2,5)
|<math>>10^{10^{10^{3314360}}}</math>
|<math> > 10^{10^{10^{3314360}}} </math>
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|
|
|-
|BB(3,5)
|<math> > f_\omega(2 \uparrow^{15} 5) > f_\omega^2(15) </math>
|{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}}
|
|
|}
|}

Revision as of 13:58, 2 September 2024

Busy Beaver Champions are the current record holding Turing machines who maximize a Busy Beaver function. In this article we focus specifically on the longest running TMs. Some have been proven to be the longest running of all (and so are the ultimate champion) while others are only current champions and may be usurped in the future. For smaller domains, Pascal Michel's website is the canonical source for Busy Beaver champions and the History of Previous Champions.

2-Symbol TMs

Rows are blank if no champion has been found which surpasses a smaller size problem. Take also note that the fx(n) used in the lowerbounds represent the Fast Growing Hierarchy.

Runtime Champions Comment
BB(2) 6 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch) Discovered and proven by hand by Tibor Radó
BB(3) 21 1RB1RZ_1LB0RC_1LC1LA (bbch) Proven by Shen Lin
BB(4) 107 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) Discovered and proven by Allen Brady
BB(5) 47,176,870 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) Discovered by Heiner Marxen & Jürgen Buntrock in 1989

Proven by bbchallenge.org in 2024

BB(6) >1015 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch) Discovered by Pavel Kropitz in 2022
BB(7)
BB(8) >254>f6(2) 1RH1RF_0LC0LH_0RD1LC_0RE1RA_1RB1RE_1RZ1RG_1RF0RE_1LB1LH (bbch) Discovered by Racheline in 2024
BB(9)
BB(10) >fω2(25) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch) Discovered by Racheline in 2024
BB(11) >fω2(212)>fω2(f3(9)) 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch) Discovered by Racheline in 2024
BB(12) >fω4(243)>fω4(f4(2)) 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch) Discovered by Racheline in 2024
BB(13)
BB(14) >fω+1(65536)>g64 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch) Discovered by Racheline in 2024
BB(15)
BB(16) >fω+1(229) Designed by Daniel Nagaj in 2021[1]
BB(20) >fω+22(21) Discovered by Racheline in 2024
BB(21) >fω22(4341) Discovered by Racheline in 2024
BB(51) >fϵ0+1(8) Designed by Racheline in 2024

3-Symbol TMs

Runtime Champions Comment
BB(2,3) 38 1RB2LB1RZ_2LA2RB1LB (bbch)
BB(3,3) >1017 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
BB(4,3) >1014072 1RB1RZ2RC_2LC2RD0LC_1RA2RB0LB_1LB0LD2RC (bbch)

4-Symbol TMs

Runtime Champions Comment
BB(2,4) 3,932,964 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
BB(3,4) >2155 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)

5-Symbol TMs

Runtime Champions Comment
BB(2,5) >1010103314360 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
BB(3,5) >fω(2155)>fω2(15) 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)

References

  1. Shawn Ligocki. 2022. "BB(16) > Graham's Number". https://www.sligocki.com/2022/07/11/bb-16-graham.html