User:Polygon/Collection of BB Champions: Difference between revisions
→Maximum Consecutive Ones Function (Num(n,m)): added num(3,3) and num(4,3) |
→Oracle Busy Beaver for Lambda Calculus (BBλ1(n)): changed formatting |
||
| (20 intermediate revisions by the same user not shown) | |||
| Line 375: | Line 375: | ||
|165 | |165 | ||
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}} | |{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}} | ||
|- | |||
|num(2,3) | |||
|6 | |||
|{{TM|1RB1LA1LB_0LA2RA1RZ|halt}} | |||
|- | |- | ||
|num(3,3) | |num(3,3) | ||
| Line 515: | Line 519: | ||
|- | |- | ||
|BLB(2) | |BLB(2) | ||
| | |8<ref name=":3">Nick Drozd. "[https://nickdrozd.github.io/2021/02/14/blanking-beavers.html Blanking Beavers]". Accessed 15 August 2025.</ref> | ||
|{{TM|1RB0RA_1LB1LA}} | |{{TM|1RB0RA_1LB1LA}} | ||
|- | |- | ||
| Line 547: | Line 551: | ||
|≥ 77<ref name=":4" /> | |≥ 77<ref name=":4" /> | ||
|{{TM|1RB2LA0RB_1LA0LB1RA}} | |{{TM|1RB2LA0RB_1LA0LB1RA}} | ||
|- | |||
|BLB(3,3) | |||
|> 10<sup>42,745</sup> | |||
|{{TM|1RB2RB1LA_2LC0LB2LB_2RC2RA0LC}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 639: | Line 647: | ||
|≥ 119,120,230,102 | |≥ 119,120,230,102 | ||
|{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}} | |{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}} | ||
|- | |||
|BBS(5,2) | |||
|> 10<sup>14,006</sup> | |||
|{{TM|1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 657: | Line 669: | ||
|> 10 ↑↑ 6 | |> 10 ↑↑ 6 | ||
|{{TM|1RB0LB2LA_1LA0RC0LB_2RC2RB0LC}} | |{{TM|1RB0LB2LA_1LA0RC0LB_2RC2RB0LC}} | ||
|- | |||
|BBS(4,3) | |||
|> <math>10 \uparrow^{4} 4</math> | |||
|{{TM|1RB1RD1LC_2LB1RB1LC_1LB1LA1LD_0RB2RA2RD}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 836: | Line 852: | ||
|BLBi(3) | |BLBi(3) | ||
|4 | |4 | ||
| | |{{TM|1RB0RA_1LA---}} | ||
|- | |- | ||
|BLBi(4) | |BLBi(4) | ||
|12 | |12 | ||
| | |{{TM|1RB---_1RC---_1LC0RC}} | ||
|- | |- | ||
|BLBi(5) | |BLBi(5) | ||
|30 | |30 | ||
| | |{{TM|1RB------_1RC------_2LC2RC0RC}} | ||
|- | |- | ||
|BLBi(6) | |BLBi(6) | ||
| Line 852: | Line 868: | ||
|BLBi(7) | |BLBi(7) | ||
|808 | |808 | ||
| | ||{{TM|1RB------_1RC------_0RD2LC---_1LD2RD0RC}} | ||
|- | |- | ||
|BLBi(8) | |BLBi(8) | ||
|≥ 1,367,361,263,049 | |≥ 1,367,361,263,049 | ||
|{{TM|1RB2RA1RA2RB_2LB3LA0RB0RA}} | |{{TM|1RB2RA1RA2RB_2LB3LA0RB0RA}} | ||
|- | |||
|BLBi(9) | |||
|> 10<sup>42,745</sup> | |||
|{{TM|1RB2RB1LA_2LC0LB2LB_2RC2RA0LC}} | |||
|} | |} | ||
| Line 932: | Line 952: | ||
!BBλ(n) | !BBλ(n) | ||
!Champions | !Champions | ||
|- | |||
|BBλ(4) | |||
|4 | |||
|<math>\lambda 1</math> | |||
|- | |||
|BBλ(6) | |||
|6 | |||
|<math>\lambda\lambda 1</math> | |||
|- | |||
|BBλ(7) | |||
|7 | |||
|<math>\lambda\lambda 2</math> | |||
|- | |||
|BBλ(8) | |||
|8 | |||
|<math>\lambda\lambda\lambda 1</math> | |||
|- | |||
|BBλ(9) | |||
|9 | |||
|<math>\lambda\lambda\lambda 2</math> | |||
|- | |||
|BBλ(10) | |||
|10 | |||
|<math>\lambda\lambda\lambda\lambda 1</math> | |||
|- | |||
|BBλ(11) | |||
|11 | |||
|<math>\lambda\lambda\lambda\lambda 2</math> | |||
|- | |||
|BBλ(12) | |||
|12 | |||
|<math>\lambda\lambda\lambda\lambda\lambda 1</math> | |||
|- | |||
|BBλ(13) | |||
|13 | |||
|<math>\lambda\lambda\lambda\lambda\lambda 2</math> | |||
|- | |||
|BBλ(14) | |||
|14 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda 1</math> | |||
|- | |||
|BBλ(15) | |||
|15 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda 2</math> | |||
|- | |||
|BBλ(16) | |||
|16 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda\lambda 1</math> | |||
|- | |||
|BBλ(17) | |||
|17 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda\lambda 2</math> | |||
|- | |||
|BBλ(18) | |||
|18 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda 1</math> | |||
|- | |||
|BBλ(19) | |||
|19 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda 2</math> | |||
|- | |||
|BBλ(20) | |||
|20 | |||
|<math>\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda\lambda 1</math> | |||
|- | |- | ||
|BBλ(21) | |BBλ(21) | ||
|22 | |22 | ||
|< | |<math>\lambda(1(\lambda 2))(1(\lambda 2))</math> | ||
|- | |- | ||
|BBλ(22) | |BBλ(22) | ||
|24 | |24 | ||
|< | |<math>\lambda(1 1) (1 1) (1 1)</math> | ||
|- | |- | ||
|BBλ(23) | |BBλ(23) | ||
|26 | |26 | ||
|< | |<math>\lambda(1 (\lambda\lambda 2)) (1 (\lambda\lambda 2))</math> | ||
|- | |- | ||
|BBλ(24) | |BBλ(24) | ||
|30 | |30 | ||
|< | |<math>\lambda(1 (\lambda 1)) (1 (\lambda 1)) (1 (\lambda 1))</math> | ||
|- | |- | ||
|BBλ(25) | |BBλ(25) | ||
|42 | |42 | ||
|< | |<math>\lambda 1 (\lambda 1 (2 1)) (1 (1 (\lambda 1 (2 1))))</math> | ||
|- | |- | ||
|BBλ(26) | |BBλ(26) | ||
|52 | |52 | ||
|< | |<math>\lambda\lambda 2 (\lambda\lambda 2 (1 2)) (1 (2 (\lambda\lambda 2 (1 2))))</math> | ||
|- | |- | ||
|BBλ(27) | |BBλ(27) | ||
|44 | |44 | ||
|< | |<math>\lambda\lambda 1 (\lambda 1 (2 1)) (1 (1 (\lambda 1 (2 1))))</math> | ||
|- | |- | ||
|BBλ(28) | |BBλ(28) | ||
|58 | |58 | ||
|< | |<math>\lambda 1 (\lambda\lambda 1 (3 (\lambda 2))) (1 (\lambda 2 (\lambda\lambda 1 (4 (\lambda 2)))))</math> | ||
|- | |- | ||
|BBλ(29) | |BBλ(29) | ||
|223 | |223 | ||
|< | |<math>\lambda(\lambda 1 1) (\lambda 1 (1 (2 1)))</math> | ||
|- | |- | ||
|BBλ(30) | |BBλ(30) | ||
|160 | |160 | ||
|< | |<math>(\lambda 1 1 1) (\lambda\lambda 2 (1 2))</math> | ||
|- | |- | ||
|BBλ(31) | |BBλ(31) | ||
|267 | |267 | ||
|< | |<math>(\lambda 1 1) (\lambda\lambda 2 (2 (1 2)))</math> | ||
|- | |- | ||
|BBλ(32) | |BBλ(32) | ||
|298 | |298 | ||
|< | |<math>\lambda(\lambda 1 1) (\lambda 1 (1 (2 (\lambda 2))))</math> | ||
|- | |- | ||
|BBλ(33) | |BBλ(33) | ||
|1812 | |1812 | ||
|< | |<math>\lambda(\lambda 1 1) (\lambda 1 (1 (1 (2 1))))</math> | ||
|- | |- | ||
|BBλ(34) | |BBλ(34) | ||
|327,686 | |327,686 | ||
|< | |<math>(\lambda 1 1 1 1) (\lambda\lambda 2 (2 1))</math> | ||
|- | |- | ||
|BBλ(35) | |BBλ(35) | ||
|<math>5 \times 3^{3^{3}} +6 = 38\,127\,987\,424\,941 > 3.8 \times 10^{13}</math> | |<math>5 \times 3^{3^{3}} +6 = 38\,127\,987\,424\,941 > 3.8 \times 10^{13}</math> | ||
|< | |<math>(\lambda 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math> | ||
|- | |- | ||
|BBλ(36) | |BBλ(36) | ||
|<math>5 \times 2^{2^{2^{3}}} +6 > 5.7 \times 10^{77}</math> | |<math>5 \times 2^{2^{2^{3}}} +6 > 5.7 \times 10^{77}</math> | ||
|< | |<math>(\lambda 1 1) (\lambda 1 (1 (\lambda\lambda 2 (2 1))))</math> | ||
|- | |- | ||
|BBλ(37) | |BBλ(37) | ||
|<math>BB \lambda(35) +2 =5 \times 3^{3^{3}} +8 = 38\,127\,987\,424\,943 > 3.8 \times 10^{13}</math> | |<math>BB \lambda(35) +2 =5 \times 3^{3^{3}} +8 = 38\,127\,987\,424\,943 > 3.8 \times 10^{13}</math> | ||
|< | |<math>\lambda(\lambda 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math> | ||
|- | |- | ||
|BBλ(38) | |BBλ(38) | ||
|<math>\geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{19729}</math> | |<math>\geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{19729}</math> | ||
|< | |<math>(\lambda 1 1 1 1 1) (\lambda\lambda 2 (2 1))</math> | ||
|- | |- | ||
|BBλ(39) | |BBλ(39) | ||
|<math>\geq 5 \times 3^{3^{3^{3}}} +6 > 10^{3\,638\,334\,640\,024}</math> | |<math>\geq 5 \times 3^{3^{3^{3}}} +6 > 10^{3\,638\,334\,640\,024}</math> | ||
|< | |<math>(\lambda 1 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math> | ||
|- | |- | ||
|BBλ(40) | |BBλ(40) | ||
|<math>> (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16</math> | |<math>> (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16</math> | ||
|< | |<math>(\lambda 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math> | ||
|- | |- | ||
|BBλ(41) | |BBλ(41) | ||
|<math>\geq 5 \times 3^{3^{85}} +6 > 10^{1.7 \times 10^{40}}</math> | |<math>\geq 5 \times 3^{3^{85}} +6 > 10^{1.7 \times 10^{40}}</math> | ||
|< | |<math>(\lambda 1 (\lambda 1 1) 1) (\lambda\lambda 2 (2 (2 1)))</math> | ||
|- | |- | ||
|BBλ(42) | |BBλ(42) | ||
|<math>\geq BB \lambda(40) + 2 > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16</math> | |<math>\geq BB \lambda(40) + 2 > (2 \uparrow\uparrow)^{15}33 > 10 \uparrow\uparrow\uparrow 16</math> | ||
|< | |<math>\lambda(\lambda 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math> | ||
|- | |- | ||
|BBλ(43) | |BBλ(43) | ||
|<math>> 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math> | |<math>> 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math> | ||
|< | |<math>(\lambda 1 1) (\lambda 1 (\lambda 1 (\lambda\lambda 2 (2 1)) 2))</math> | ||
|- | |- | ||
|BBλ(44) | |BBλ(44) | ||
|<math>> 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math> | |<math>> 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math> | ||
|< | |<math>(\lambda 1 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math> | ||
|- | |- | ||
|BBλ(45) | |BBλ(45) | ||
|<math>\geq BB \lambda(43) + 2 > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math> | |<math>\geq BB \lambda(43) + 2 > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math> | ||
|< | |<math>\lambda(\lambda 1 1) (\lambda 1 (\lambda 1 (\lambda\lambda 2 (2 1)) 2))</math> | ||
|- | |- | ||
|BBλ(46) | |BBλ(46) | ||
|<math>\geq BB \lambda(44) + 2 > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math> | |<math>\geq BB \lambda(44) + 2 > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math> | ||
|< | |<math>\lambda(\lambda 1 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math> | ||
|- | |- | ||
|BBλ(47) | |BBλ(47) | ||
| | |<math>> f_{\omega}\left(f_{5}\left(2\right)\right)</math> | ||
| | |<math>(\lambda 1 1 1)(\lambda\lambda 1 (1 2) (\lambda\lambda 2 (2 1)))</math> | ||
|- | |- | ||
|BBλ(48) | |BBλ(48) | ||
|<math>> 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math> | |<math>> 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math> | ||
|< | |<math>(\lambda 1 1 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math> | ||
|- | |- | ||
|BBλ(49) | |BBλ(49) | ||
|<math>> f_{\omega+1}(\frac{2 \uparrow\uparrow 6}{2}) > \text{Graham's Number}</math> | |<math>> f_{\omega+1}(\frac{2 \uparrow\uparrow 6}{2}) > \text{Graham's Number}</math> | ||
|< | |<math>(\lambda 1 1) (\lambda 1 (1 (\lambda\lambda 1 2 (\lambda\lambda 2 (2 1)))))</math> | ||
|- | |||
|BBλ(61) | |||
|<math>> f_{\omega^{2 \uparrow\uparrow 18-1}}\left(2\right)</math> | |||
|<math>(\lambda 1 1 1) (\lambda 1 (1 (\lambda\lambda\lambda 1 3 2 (\lambda\lambda 2 (2 1)))))</math> | |||
|- | |||
|BBλ(86) | |||
|<math>> f_{\omega^{\omega^{2}}}\left(2\right)</math> | |||
|<math>(\lambda 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 1))</math> | |||
|- | |||
|BBλ(90) | |||
|<math>> f_{\zeta_0}\left(15\right)</math> | |||
|<math>(\lambda 1 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 1))</math> | |||
|- | |||
|BBλ(94) | |||
|<math>> f_{\psi(\Omega_\omega)}\left(12\right)</math> | |||
|<math>(\lambda 1 1 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 1))</math> | |||
|- | |||
|BBλ(95) | |||
|<math>> f_{\psi(\Omega_\omega)}\left(23\right)</math> | |||
|<math>(\lambda 1 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math> | |||
|- | |||
|BBλ(96) | |||
|<math>> f_{\psi(\Omega_\omega)}\left(f_{\omega^{\omega^{2}}}\left(2\right)\right)</math> | |||
|<math>(\lambda 1 (\lambda 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) 1) (\lambda\lambda 2 (2 1))</math> | |||
|- | |||
|BBλ(100) | |||
|<math>> f_{\psi(\Omega_\omega)+1}\left(4\right)</math> | |||
|<math>(\lambda 1 1 (\lambda 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) 1) (\lambda\lambda 2 (2 1))</math> | |||
|- | |||
|BBλ(213) | |||
|> q(5) | |||
|<code>too large to show</code> | |||
|- | |||
|BBλ(331) | |||
|lim(BMS) | |||
|<code>too large to show</code> | |||
|- | |- | ||
|BBλ(1850) | |BBλ(1850) | ||
|<math>> \text{Loader's Number}</math> | |<math>> \text{Loader's Number}</math> | ||
|<code> | |<code>too large to show</code> | ||
|} | |} | ||
| Line 1,068: | Line 1,188: | ||
|BBλ<sub>1</sub>(2) | |BBλ<sub>1</sub>(2) | ||
|1 | |1 | ||
|< | |<math>1</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(3) | |BBλ<sub>1</sub>(3) | ||
| Line 1,076: | Line 1,196: | ||
|BBλ<sub>1</sub>(4) | |BBλ<sub>1</sub>(4) | ||
|4 | |4 | ||
|< | |<math>\lambda 1</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(5) | |BBλ<sub>1</sub>(5) | ||
|5 | |5 | ||
|< | |<math>\lambda 2</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(6) | |BBλ<sub>1</sub>(6) | ||
|6 | |6 | ||
|< | |<math>\lambda \lambda 1</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(7) | |BBλ<sub>1</sub>(7) | ||
|7 | |7 | ||
|< | |<math>\lambda \lambda 2</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(8) | |BBλ<sub>1</sub>(8) | ||
|26 | |26 | ||
|< | |<math>1 (\lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(9) | |BBλ<sub>1</sub>(9) | ||
|9 | |9 | ||
|< | |<math>\lambda \lambda 2</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(10) | |BBλ<sub>1</sub>(10) | ||
|36 | |36 | ||
|< | |<math>1 (\lambda \lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(11) | |BBλ<sub>1</sub>(11) | ||
|41 | |41 | ||
|< | |<math>1 (\lambda \lambda 2)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(12) | |BBλ<sub>1</sub>(12) | ||
|266 | |266 | ||
|< | |<math>1 (1 (\lambda 1))</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(13) | |BBλ<sub>1</sub>(13) | ||
|51 | |51 | ||
|< | |<math>1 (\lambda \lambda 2)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(14) | |BBλ<sub>1</sub>(14) | ||
|<math>f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78}</math> | |<math>f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78}</math> | ||
|< | |<math>1 (1 (\lambda \lambda 1))</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(15) | |BBλ<sub>1</sub>(15) | ||
|<math>f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{1.7 \times 10^{40}}</math> | |<math>f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{1.7 \times 10^{40}}</math> | ||
|< | |<math>1 (1 (\lambda \lambda 2))</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(16) | |BBλ<sub>1</sub>(16) | ||
|<math>f(266)</math> | |<math>f(266)</math> | ||
|< | |<math>1 (1 (1 (\lambda 1)))</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(17) | |BBλ<sub>1</sub>(17) | ||
|<math>f(51)</math> | |<math>f(51)</math> | ||
|< | |<math>1 (1 (\lambda \lambda \lambda 2))</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(18) | |BBλ<sub>1</sub>(18) | ||
|<math>f^{4}(4) = f(f(266))</math> | |<math>f^{4}(4) = f(f(266))</math> | ||
|< | |<math>1 (\lambda 1) 1 (\lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(19) | |BBλ<sub>1</sub>(19) | ||
|<math>f^{3}(7) = f(f(41))</math> | |<math>f^{3}(7) = f(f(41))</math> | ||
|< | |<math>1 (1 (1 (\lambda \lambda 2)))</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(20) | |BBλ<sub>1</sub>(20) | ||
|<math>f^{6}(4) = f^{4}(266)</math> | |<math>f^{6}(4) = f^{4}(266)</math> | ||
|< | |<math>1 (\lambda \lambda 1) 1 (\lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(21) | |BBλ<sub>1</sub>(21) | ||
|<math>f^{7}(4) = f^{5}(266)</math> | |<math>f^{7}(4) = f^{5}(266)</math> | ||
|< | |<math>1 (\lambda \lambda 2) 1 (\lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(22) | |BBλ<sub>1</sub>(22) | ||
|<math>f^{52}(4) = f^{50}(266)</math> | |<math>f^{52}(4) = f^{50}(266)</math> | ||
|< | |<math>1 (1 (\lambda 1)) 1 (\lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(28) | |BBλ<sub>1</sub>(28) | ||
|<math>\geq f^{BB \lambda(f^{3}(4))}(4)</math> | |<math>\geq f^{BB \lambda(f^{3}(4))}(4)</math> | ||
|< | |<math>1 (\lambda 1) 1 (\lambda 1) 1 (\lambda 1)</math> | ||
|- | |- | ||
|BBλ<sub>1</sub>(29) | |BBλ<sub>1</sub>(29) | ||
|<math>\geq f^{BB \lambda(f^{BB \lambda(f^{4}(4))+4}(4))+BB \lambda(f^{4}(4))+5}(4)</math> | |<math>\geq f^{BB \lambda(f^{BB \lambda(f^{4}(4))+4}(4))+BB \lambda(f^{4}(4))+5}(4)</math> | ||
|< | |<math>1(\lambda 1)(\lambda 1 2 1)(\lambda 1)</math> | ||
|} | |} | ||
| Line 1,200: | Line 1,320: | ||
|<math>> f_{\omega+1}(10^{10^{19,727}})</math> | |<math>> f_{\omega+1}(10^{10^{19,727}})</math> | ||
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code> | |<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code> | ||
|- | |||
|18 | |||
|<math>> f_{\omega^\omega}(2 \uparrow\uparrow 18)</math> | |||
|<code>(\1 1 1) (\1 (1 (\\\1 3 2 (\\2 (2 1)))))</code> | |||
|- | |||
|22 | |||
|<math>> f_{\omega^{\omega+2}}(2)</math> | |||
|<code>(\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))</code> | |||
|- | |- | ||
|23 | |23 | ||
|<math>> f_{\ | |<math>> f_{\zeta_0}(15)</math> | ||
|<code>(\1 1 (\\ | |<code>(\1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))</code> | ||
|- | |- | ||
|24 | |24 | ||
|<math>> f_{\omega | |<math>> f_{\psi(\Omega_\omega)}(12)</math> | ||
|<code>(\1 1 (\\ | |<code>(\1 1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))</code> | ||
|- | |- | ||
|25 | |25 | ||
|<math>> f_{\omega^\omega}( | |<math>> f_{\psi(\Omega_\omega)}(f_{\omega^{\omega+2}}(2))</math> | ||
|<code>(\1 1 (\\\1 3 2 1) | |<code>(\1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1))</code> | ||
|- | |- | ||
|26 | |26 | ||
|<math>> f_{\ | |<math>> f_{\psi(\Omega_\omega+1)}(4)</math> | ||
|<code>(\1 1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1))</code> | |||
|<code>(\1 1 | |||
|} | |} | ||
| Line 1,532: | Line 1,648: | ||
|- | |- | ||
|TT(4) | |TT(4) | ||
|≥ | |≥ 48,186 | ||
|<code> | |<code>1TB1PA_1PC0PA_1TA0PD_---1TA</code> | ||
|- | |- | ||
|TT(2,3) | |TT(2,3) | ||
| Line 1,540: | Line 1,656: | ||
|- | |- | ||
|TT(3,3) | |TT(3,3) | ||
|≥ | |≥ 45,153 | ||
|<code> | |<code>1PB1PA1TA_2TB2PB2PC_---2PA1TC</code> | ||
|- | |- | ||
|TT(2,4) | |TT(2,4) | ||
| | |> 3.467*10<sup>15</sup> | ||
|<code> | |<code>1TA2PB3TB---_3TA1PB1TA1PA</code> | ||
|} | |} | ||
Latest revision as of 08:59, 14 February 2026
A collection of Busy Beaver Champions including Champions for BB-Adjacent functions. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).
Note: highest ref name in use: 4
State-and-Symbol-Limited Busy Beaver functions
Busy Beaver functions where the programs size is limited by the amount of states and symbols.
Original Busy Beaver Functions
Maximum Shifts Function (S(n,m), also commonly called BB(n,m))
| 2 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1) | 1 | 1RZ--- (bbch)
|
| BB(2) | 6 | 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch)
|
| BB(3) | 21 | 1RB1RZ_1LB0RC_1LC1LA (bbch)
|
| BB(4) | 107 | 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch)
|
| BB(5) | 47,176,870 | 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
|
| BB(6) | > 10 ↑↑ 10 ↑↑ 10 ↑↑ 8.10237 | 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
|
| BB(7) | 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
| |
| BB(8) | ||
| BB(9) | 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH (bbch)
| |
| BB(10) | 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch)
| |
| BB(11) | 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch)
| |
| BB(12) | 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch)
| |
| BB(14) | 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch)
| |
| BB(15) | 0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN (bbch)
| |
| BB(16) | ||
| BB(18) | ||
| BB(20) | ||
| BB(21) | ||
| BB(40) | ||
| BB(41) | ||
| BB(51) |
| 3 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,3) | 1 | 1RZ------ (bbch)
|
| BB(2,3) | 38 | 1RB2LB1RZ_2LA2RB1LB (bbch)
|
| BB(3,3) | 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
| |
| BB(4,3) | 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)
|
| 4 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,4) | 1 | 1RZ--------- (bbch)
|
| BB(2,4) | 3,932,964 | 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
|
| BB(3,4) | [1] | 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)
|
| 5 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,5) | 1 | 1RZ------------ (bbch)
|
| BB(2,5) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
| |
| BB(3,5) | 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)
|
| 6 Symbols: | Runtime | Champions |
|---|---|---|
| BB(1,6) | 1 | 1RZ--------------- (bbch)
|
| BB(2,6) | [2] | 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
Maximum Score Function (Σ(n,m))
| 2 Symbols: | Score | Champions |
|---|---|---|
| Σ(1) | 1 | 1RZ--- (bbch)
|
| Σ(2) | 4 | 1RB1LB_1LA1RZ (bbch)
|
| Σ(3) | 6 | 1RB1RZ_0RC1RB_1LC1LA (bbch) 1RB1RC_1LC1RZ_1RA0LB (bbch) 1RB1LC_1LA1RB_1LB1RZ (bbch) 1RB1RA_1LC1RZ_1RA1LB (bbch) 1RB1LC_1RC1RZ_1LA0LB (bbch)
|
| Σ(4) | 13 | 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) 1RB0RC_1LA1RA_1RZ1RD_1LD0LB (bbch)
|
| Σ(5) | 4098 | 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) 1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC (bbch)
|
| Σ(6) | > 10 ↑↑ 10 ↑↑ 10 ↑↑ 8.10237 | 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
|
| Σ(7) | 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
|
| 3 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,3) | 1 | 1RZ------ (bbch)
|
| Σ(2,3) | 9 | 1RB2LB1RZ_2LA2RB1LB (bbch)
|
| Σ(3,3) | ≥ 374,676,383 | 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
|
| Σ(4,3) | 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)
|
| 4 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,4) | 1 | 1RZ--------- (bbch)
|
| Σ(2,4) | 2050 | 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
|
| Σ(3,4) | [1] | 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)
|
| 5 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,5) | 1 | 1RZ------------ (bbch)
|
| Σ(2,5) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
|
| 6 Symbols: | Score | Champions |
|---|---|---|
| Σ(1,6) | 1 | 1RZ--------------- (bbch)
|
| Σ(2,6) | [2] | 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
Beeping Busy Beavers
Beeping Busy Beaver (BBB(n,m))
| 2 Symbols: | Steps taken | Champions |
|---|---|---|
| BBB(1) | 1 | |
| BBB(2) | 6 | 1RB1LB_1LB1LA (bbch)
|
| BBB(3) | 55 | 1RB0LB_1LA0RC_1LC1LA (bbch)
|
| BBB(4) | ≥ 32,779,478 | 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
|
| BBB(5) | 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch)
|
| 3 Symbols: | Steps taken | Champions |
|---|---|---|
| BBB(1,3) | ||
| BBB(2,3) | 59[3] | 1RB2LB1LA_2LB2RA0RA (bbch)
|
| BBB(3,3) | ≥ 10 ↑↑ 6 | 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch)
|
| 4 Symbols: | Steps taken | Champions |
|---|---|---|
| BBB(1,4) | ||
| BBB(2,4) | [4] | 1RB2LA1RA1LB_0LB2RB3RB1LA (bbch)
|
Beeping Booping Busy Beaver (BBBB(n,m))
| 2 Symbols: | Steps taken | Champions |
|---|---|---|
| BBBB(1) | 2 | |
| BBBB(2) | 17 |
Maximum Consecutive Ones Function (Num(n,m))
| Domain | Number of Ones | Champions |
|---|---|---|
| num(1) | 1 | 1RZ--- (bbch)
|
| num(2) | 4 | 1RB1LB_1LA1LZ (bbch)
|
| num(3) | 6 | 1RB1LC_1RC1LZ_1LA0LB (bbch)
|
| num(4) | 12 | 1RB0LA_1RC1LB_1LB1RD_1RZ0RA (bbch)
|
| num(5) | 165 | 1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB (bbch) 0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC (bbch)
|
| num(2,3) | 6 | 1RB1LA1LB_0LA2RA1RZ (bbch)
|
| num(3,3) | ≥ 12 | 1RB1RA1RZ_1LC1LC2LA_2RA1LB1LA (bbch)
|
| num(4,3) | 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch)
|
Maximum Space Function (BBspace(n,m))
| 2 Symbols: | Cells visited | Champions |
|---|---|---|
| BBspace(1,2) | 1 | 1RZ--- (bbch)
|
| BBspace(2,2) | 4 | 1RB1LB_1LA1RZ (bbch) and 1RB0LB_1LA1RZ (bbch)
|
| BBspace(3,2) | 7 | 1RB1RC_1LC1RZ_1RA0LB (bbch) and 1RB0RC_1LC1RZ_1RA0LB (bbch)
|
| BBspace(4,2) | 16 | 1RB0RA_1LC0RD_0LD0LB_1RA1RZ (bbch)
|
| BBspace(5,2) | 12289 | 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
|
| 3 Symbols: | Cells visited | Champions |
|---|---|---|
| BBspace(1,3) | ||
| BBspace(2,3) | 9 | 1RB2LB1RZ_2LA2RB1LB (bbch)
|
| BBspace(2,4) | 2050 | 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
|
Size of the runtime spectrum (R(n,m))
There currently doesn't seem to be any available information about values of this function.
Reversible Turing Machines
Maximum Shifts Function (BBrev(n,m))
| 2 Symbols: | Steps | Champions |
|---|---|---|
| BBrev(1) | ||
| BBrev(2) | 6 | 0RB1RZ_1LA1RB (bbch)
|
| BBrev(3) | 17 | 0RB1RZ_0LC1RA_1RB1LC (bbch)
|
| BBrev(4) | 48 | 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
|
| BBrev(5) | 388 | 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
|
| BBrev(6) | ≥ 537,556 | 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
|
| BBrev(7) | 1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ (bbch)
|
Maximum Score Function (Σrev(n,m))
| 2 Symbols: | Score | Champions |
|---|---|---|
| Σrev(1) | ||
| Σrev(2) | ≥ 2 | 0RB1RZ_1LA1RB (bbch)
|
| Σrev(3) | ≥ 4 | 0RB1RZ_0LC1RA_1RB1LC (bbch)
|
| Σrev(4) | ≥ 6 | 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
|
| Σrev(5) | ≥ 16 | 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
|
| Σrev(6) | ≥ 1161 | 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
|
Blanking Busy Beaver (BLB(n,m))
| 2 Symbols: | Steps | Champions |
|---|---|---|
| BLB(1) | nonexistent | nonexistent |
| BLB(2) | 8[4] | 1RB0RA_1LB1LA (bbch)
|
| BLB(3) | ≥ 34[5] | 1RB1LB_1LA1LC_1RC0LC (bbch)
|
| BLB(4) | ≥ 32,779,477 | 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
|
| BLB(5) | ≥ 32,810,047[6] | 1RB1LC_1RD0LE_0RD0RC_1LD1LA_1RB1RE (bbch)
|
| BLB(6) | ≥ 65,538,549[7] | 1RB1LE_1RD1RB_0RD0RE_1LD1LA_0RF1RF_0LC1LC (bbch)
|
| 3 Symbols: | Steps | Champions |
|---|---|---|
| BLB(1,3) | nonexistent | nonexistent |
| BLB(2,3) | ≥ 77[5] | 1RB2LA0RB_1LA0LB1RA (bbch)
|
| BLB(3,3) | > 1042,745 | 1RB2RB1LA_2LC0LB2LB_2RC2RA0LC (bbch)
|
| 4 Symbols: | Steps | Champions |
|---|---|---|
| BLB(1,4) | nonexistent | nonexistent |
| BLB(2,4) | ≥ 1,367,361,263,049[5] | 1RB2RA1RA2RB_2LB3LA0RB0RA (bbch)
|
Lazy Beaver
Shifts Function (LB(n,m))
| 1 State | 2 States | 3 States | 4 States | 5 States | 6 States | |
|---|---|---|---|---|---|---|
| 2 Symbols | 2 | 7 | 22 | 72 | 427 | 8407 |
| 3 Symbols | 2 | 23 | 351 | 189,270 | ||
| 4 Symbols | 2 | 93 | 242,789 | |||
| 5 Symbols | 2 | 956 | ||||
| 6 Symbols | 2 | 33,851 |
Period-oriented Busy Beavers
Busy Preperiodic Beaver (BBS(n,m))
| 2 Symbols: | Preperiod | Champions |
|---|---|---|
| BBS(1,2) | 0 | 1RA--- (bbch)
|
| BBS(2,2) | ≥ 9 | 1RB0LB_1LA0RB (bbch) proven winner?
|
| BBS(3,2) | 101 | 1RB1LB_0RC0LA_1LC0LA (bbch)
|
| BBS(4,2) | ≥ 119,120,230,102 | 1RB1LC_0LA1RD_0RB0LC_1LA0RD (bbch)
|
| BBS(5,2) | > 1014,006 | 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch)
|
| 3 Symbols: | Preperiod | Champions |
|---|---|---|
| BBS(1,3) | 0 | 1RA------ (bbch)
|
| BBS(2,3) | ≥ 165[8] | 1RB0LA---_1LB2LA0RB (bbch)
|
| BBS(3,3) | > 10 ↑↑ 6 | 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch)
|
| BBS(4,3) | > | 1RB1RD1LC_2LB1RB1LC_1LB1LA1LD_0RB2RA2RD (bbch)
|
| 4 Symbols: | Preperiod | Champions |
|---|---|---|
| BBS(1,4) | 0 | 1RA--------- (bbch)
|
| BBS(2,4) | ≥ 205,770,076,433,044,242,247,860 | 1RB2LA1RA1LB_0LB2RB3RB1LA (bbch)
|
Busy Periodic Beaver (BBP(n,m))
| 2 Symbols: | Period | Champions |
|---|---|---|
| BBP(1,2) | 1 | 1RA--- (bbch)
|
| BBP(2,2) | ≥ 9 | 1RB0RB_1LB1RA (bbch) proven winner?
|
| BBP(3,2) | 92 | 1RB0LA_0RC1LA_1LC0RB (bbch)
|
| BBP(4,2) | ≥ 212,081,736 | 1RB0LA_0RC1RD_1LD0RB_1LA1RB (bbch)
|
| 3 Symbols: | Period | Champions |
|---|---|---|
| BBP(1,3) | 1 | 1RA------ (bbch)
|
| BBP(2,3) | ||
| BBP(3,3) | ≥ 1,195 | 1RB2RC1LC_0RC0RB1LA_2LA2RC1LB (bbch)
|
| 4 Symbols: | Period | Champions |
|---|---|---|
| BBP(1,4) | 1 | 1RA--------- (bbch)
|
| BBP(2,4) | ≥ 33,209,131 | 1RB0RA3LB1RB_2LA0LB1RA2RB (bbch)
|
Instruction-Limited Busy Beaver
Instruction-Limited Classical Busy Beaver Functions
Instruction-Limited Maximum Shifts Function (BBi(n))
| Steps | Champions | |
|---|---|---|
| BBi(1) | 1 | 0RH (bbch) 1RH--- (bbch)
|
| BBi(2) | 3 | 0RB---_1LA--- (bbch)
|
| BBi(3) | 5 | 1RB1LB_1LA--- (bbch)
|
| BBi(4) | 16 | 1RB---_0RC---_1LC0LA (bbch)
|
| BBi(5) | 37 | 1RB2LB---_2LA2RB1LB (bbch)
|
| BBi(6) | 123 | 1RB3LA1RA0LA_2LA------3RA (bbch)
|
| BBi(7) | 3,932,963 | 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
|
| BBi(8) | 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)
| |
| BBi(9) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA--- (bbch)
|
Instruction-Limited Maximum Score Function (Σi(n))
| Score | Champions | |
|---|---|---|
| Σi(1) | 1 | 1RH--- (bbch)
|
| Σi(2) | 2 | 1RB---_1LA--- (bbch)
|
| Σi(3) | 4 | 1RB1LB_1LA--- (bbch)
|
| Σi(4) | 5 | 1RB0LB---_1LA2RA--- (bbch)
|
| Σi(5) | 9 | 1RB2LB---_2LA2RB1LB (bbch)
|
| Σi(6) | 14 | 1RB3LA1RA0LA_2LA------3RA (bbch)
|
| Σi(7) | 2050 | 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
|
| Σi(8) | 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)
| |
| Σi(9) | 1RB3LA4RB0RB2LA_1LB2LA3LA1RA--- (bbch)
|
Instruction-Limited Blanking Busy Beaver (BLBi(n))
| Steps | Champions | |
|---|---|---|
| BLBi(1) | nonexistent | nonexistent |
| BLBi(2) | nonexistent | nonexistent |
| BLBi(3) | 4 | 1RB0RA_1LA--- (bbch)
|
| BLBi(4) | 12 | 1RB---_1RC---_1LC0RC (bbch)
|
| BLBi(5) | 30 | 1RB------_1RC------_2LC2RC0RC (bbch)
|
| BLBi(6) | 77 | 1RB2LA0RB_1LA0LB1RA (bbch)
|
| BLBi(7) | 808 | 1RB------_1RC------_0RD2LC---_1LD2RD0RC (bbch)
|
| BLBi(8) | ≥ 1,367,361,263,049 | 1RB2RA1RA2RB_2LB3LA0RB0RA (bbch)
|
| BLBi(9) | > 1042,745 | 1RB2RB1LA_2LC0LB2LB_2RC2RA0LC (bbch)
|
Instruction-Limited Greedy Busy Beaver (gBBi(n))
| Steps | Champions | |
|---|---|---|
| gBBi(1) | 1 | |
| gBBi(2) | 3 | |
| gBBi(3) | 5 | |
| gBBi(4) | 13 | |
| gBBi(5) | 19 | |
| gBBi(6) | 25 | |
| gBBi(7) | 41 | |
| gBBi(8) | 55 | |
| gBBi(9) | 238 | |
| gBBi(10) | 941 | |
| gBBi(11) | 1341 | |
| gBBi(12) | 10465 | |
| gBBi(13) | 10675 | |
| gBBi(14) | ≥ 9,874,580 | 0RB6RB1LB---3LA1RB7RB2LB_1LA2RB3LA4RB5RB1LB5LA--- (bbch)
|
Program-Limited Busy Beaver
Busy Beaver for Lambda Calculus
Regular Busy Beaver for Lambda Calculus (BBλ(n))
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of BBλ(n) = n.
| BBλ(n) | Champions | |
|---|---|---|
| BBλ(4) | 4 | |
| BBλ(6) | 6 | |
| BBλ(7) | 7 | |
| BBλ(8) | 8 | |
| BBλ(9) | 9 | |
| BBλ(10) | 10 | |
| BBλ(11) | 11 | |
| BBλ(12) | 12 | |
| BBλ(13) | 13 | |
| BBλ(14) | 14 | |
| BBλ(15) | 15 | |
| BBλ(16) | 16 | |
| BBλ(17) | 17 | |
| BBλ(18) | 18 | |
| BBλ(19) | 19 | |
| BBλ(20) | 20 | |
| BBλ(21) | 22 | |
| BBλ(22) | 24 | |
| BBλ(23) | 26 | |
| BBλ(24) | 30 | |
| BBλ(25) | 42 | |
| BBλ(26) | 52 | |
| BBλ(27) | 44 | |
| BBλ(28) | 58 | |
| BBλ(29) | 223 | |
| BBλ(30) | 160 | |
| BBλ(31) | 267 | |
| BBλ(32) | 298 | |
| BBλ(33) | 1812 | |
| BBλ(34) | 327,686 | |
| BBλ(35) | ||
| BBλ(36) | ||
| BBλ(37) | ||
| BBλ(38) | ||
| BBλ(39) | ||
| BBλ(40) | ||
| BBλ(41) | ||
| BBλ(42) | ||
| BBλ(43) | ||
| BBλ(44) | ||
| BBλ(45) | ||
| BBλ(46) | ||
| BBλ(47) | ||
| BBλ(48) | ||
| BBλ(49) | ||
| BBλ(61) | ||
| BBλ(86) | ||
| BBλ(90) | ||
| BBλ(94) | ||
| BBλ(95) | ||
| BBλ(96) | ||
| BBλ(100) | ||
| BBλ(213) | > q(5) | too large to show
|
| BBλ(331) | lim(BMS) | too large to show
|
| BBλ(1850) | too large to show
|
Oracle Busy Beaver for Lambda Calculus (BBλ1(n))
Note that .
| BBλ1(n) | Champions | |
|---|---|---|
| BBλ1(1) | 0 | |
| BBλ1(2) | 1 | |
| BBλ1(3) | 0 | |
| BBλ1(4) | 4 | |
| BBλ1(5) | 5 | |
| BBλ1(6) | 6 | |
| BBλ1(7) | 7 | |
| BBλ1(8) | 26 | |
| BBλ1(9) | 9 | |
| BBλ1(10) | 36 | |
| BBλ1(11) | 41 | |
| BBλ1(12) | 266 | |
| BBλ1(13) | 51 | |
| BBλ1(14) | ||
| BBλ1(15) | ||
| BBλ1(16) | ||
| BBλ1(17) | ||
| BBλ1(18) | ||
| BBλ1(19) | ||
| BBλ1(20) | ||
| BBλ1(21) | ||
| BBλ1(22) | ||
| BBλ1(28) | ||
| BBλ1(29) |
Busy Beaver for De Bruijn Lambda Calculus
| n | Value | Champion |
|---|---|---|
| 7 | ≥ 7 | \1 1 1 1 1 1
|
| 8 | ≥ 16 | (\1 1) (\\2 (1 2))
|
| 9 | ≥ 68 | (\1 1) (\\2 (2 (1 2)))
|
| 10 | (\1 1 1) (\\2 (2 (2 1)))
| |
| 11 | (\1 1 1 1) (\\2 (2 (2 1)))
| |
| 12 | (\1 1 1) (\1 (\\2 (2 1)) 1)
| |
| 13 | (\1 1) (\1 (\1 (\\2 (2 1)) 2))
| |
| 14 | (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
| |
| 15 | (\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))
| |
| 18 | (\1 1 1) (\1 (1 (\\\1 3 2 (\\2 (2 1)))))
| |
| 22 | (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))
| |
| 23 | (\1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))
| |
| 24 | (\1 1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))
| |
| 25 | (\1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1))
| |
| 26 | (\1 1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1))
|
Busy Beaver for SKI calculus
Busy Beaver for SKI calculus
| n | Value | Champion |
|---|---|---|
| 1 | 1 | S |
| 2 | 2 | SS |
| 3 | 3 | SSS |
| 4 | 4 | SSSS |
| 5 | 6 | SSS(SS) |
| 6 | 17 | SSS(SI)S |
| 7 | ≥ 18 | S(SSS(SI)S) |
| 8 | ≥ 19 | SS(SSS(SI)S) |
| 9 | ≥ 519 | SSI((S(SS)S)S)K |
| 10 | ≥ 1041 | SSI((S(SS)S)S)KS |
Busy Beaver for SK calculus
| n | Value | Champion |
|---|---|---|
| 1 | = 1 | S |
| 2 | = 2 | SS |
| 3 | = 3 | SSS |
| 4 | = 4 | SSSS
|
| 5 | = 6 | SSS(SS)
|
| 6 | ≥ 8 | SSS(SSS)
|
| 7 | ≥ 10 | SSS(SSSS)
|
| 8 | ≥ 23 | SSS(S(SKS))S
|
Fractran (BBf(n))
| n | BBf(n) | Example Champion | Vector Representation |
|---|---|---|---|
| 2 | 1 | [1/2]
|
|
| 3 | 1 | [3/2]
|
|
| 4 | 1 | [9/2]
|
|
| 5 | 2 | [3/2, 1/3]
|
|
| 6 | 3 | [9/2, 1/3]
|
|
| 7 | 4 | [27/2, 1/3]
|
|
| 8 | 5 | [81/2, 1/3]
|
|
| 9 | 6 | [243/2, 1/3]
|
|
| 10 | 7 | [729/2, 1/3]
|
|
| 11 | 10 | [27/2, 25/3, 1/5]
|
|
| 12 | 13 | [81/2, 25/3, 1/5]
|
|
| 13 | 17 | [81/2, 125/3, 1/5]
|
|
| 14 | 21 | [243/2, 125/3, 1/5]
|
|
| 15 | 28 | [1/45, 4/5, 3/2, 25/3]
|
|
| 16 | 53 | [1/45, 4/5, 3/2, 125/3]
|
|
| 17 | 107 | [5/6, 49/2, 3/5, 40/7]
|
|
| 18 | 211 | [5/6, 49/2, 3/5, 80/7]
|
|
| 19 | 370 | [5/6, 49/2, 3/5, 160/7]
|
|
| 20 | ≥ 746 | [7/15, 22/3, 6/77, 5/2, 9/5]
|
|
| 21 | ≥ 31,957,632 | [7/15, 4/3, 27/14, 5/2, 9/5]
|
|
| 22 | [1/12, 9/10, 14/3, 11/2, 5/7, 3/11]
|
Cyclic Tag (CTBB(n))
| Runtime | Champions | |
|---|---|---|
| CTBB(2) | 5[9] | |
| CTBB(3) | > 38[10] | |
| CTBB(4) | ≥ 672[11] | |
| CTBB(5) | ≥ 2^2^2^2^182[12] | |
| CTBB(6) | > 2↑↑↑131[13] | |
| CTBB(7) | > 4↑↑↑↑(4↑↑↑3)[14] [15] |
Minsky Machines (MBB(n))
| Domain | Halting Time | Champion |
|---|---|---|
| MBB(1) | 1 | 0+Z
|
| MBB(2) | 3 | 0+B_0-B*
|
| MBB(3) | 5 | 0+B_0+C_0-C*
|
| MBB(4) | 10 | 0+B_1+C_0-BD_1-C*
|
| MBB(5) | 24 | 0-DB_0+C_1-ED_1+A_1-B*
|
| MBB(6) | ≥ 49 | 0+B_1-FC_1+D_0-CE_0+A_1-A*
|
Turmites
Terminating Turmites (TT(n,k), 1D Turmites)
Where n is the amount of states and k is the amount of symbols.
| Domain | Runtime | Champions |
|---|---|---|
| TT(2) | ≥ 13 | 1TB---_1PA0PB
|
| TT(3) | ≥ 82 | 1PB0PA_1TA0PC_1PA---
|
| TT(4) | ≥ 48,186 | 1TB1PA_1PC0PA_1TA0PD_---1TA
|
| TT(2,3) | ≥ 223 | 1TB0PA2PA_2PA---1PA
|
| TT(3,3) | ≥ 45,153 | 1PB1PA1TA_2TB2PB2PC_---2PA1TC
|
| TT(2,4) | > 3.467*1015 | 1TA2PB3TB---_3TA1PB1TA1PA
|
2D Turmites (turNing machines)
There are currently no known/available Champions for this function.
Doodle Function (doodle(c,n))
doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2).
| 2 Symbols: | Runtime | Champions |
|---|---|---|
| doodle(3,2) | ≥ 487 |
Bug Function
Bug(2,2) = 2
#### #S-# #.F# ####
Bug(3,3) = 8
##### #S..# #.#.# #.#F# #####
Bug(4,4) = 20
###### #S...# #..### #....# #..#F# ######
Bug(5,5) = 42
####### #S...## #.....# #.....# #.#.### #.#..F# #######
Bug(6,6) = 96
######## #S.....# #.###.## #.#...## #.#....# #..#.### #..#..F# ########
Bug(7,7) = 218
######### #S.###..# #......## #.#.##..# #..#...## #..#....# #...#.### #..#-..F# #########
Bug(8,8) = 506
########## #S.#.....# #.#..##.## #.#.##..## #....##..# #.#.#...## #..##....# #....#.### #....#..F# ##########
References
- ↑ 1.0 1.1 S. Ligocki. "BB(3,4) > Ack(14)." https://www.sligocki.com/2024/05/22/bb-3-4-a14.html Blog post, 2024. Accessed 15 August 2025.
- ↑ 2.0 2.1 S. Ligocki, "BB(2,6) > 10↑↑10↑↑10↑↑3". Blog post, 2023. Accessed 15 August 2025.
- ↑ Nick Drozd. "BBB(3,3) > 10↑↑6". Accessed 15 August 2025.
- ↑ 4.0 4.1 Nick Drozd. "Blanking Beavers". Accessed 15 August 2025.
- ↑ 5.0 5.1 5.2 Nick Drozd. "Latest Beeping Busy Beaver Results". Accessed 15 August 2025.
- ↑ Comment #71 "https://scottaaronson.blog/?p=5661". Accessed 26 September 2025.
- ↑ Comment #62 "https://scottaaronson.blog/?p=5661". Accessed 26 September 2025.
- ↑ Nick Drozd. Blanking Beavers
- ↑ https://discord.com/channels/960643023006490684/960643023530762341/1440163057463726233
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1440193579006951517
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1443246244142252043
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1443298934217900063
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1442847677883875479
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1442950825545564281
- ↑ https://discord.com/channels/960643023006490684/1438694294042181742/1442819117735346217