Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Link to Consistent Collatz.
 
(14 intermediate revisions by 6 users not shown)
Line 1: Line 1:
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l}
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l}
   c(2k)  & = &  k \\
   c(2k)  & = &  k \\
   c(2k+1) & = & 3k+2 \\
   c(2k+1) & = & 3k+2
\end{array}</math>
\end{array}</math>


Line 8: Line 8:
Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.


== Definitions ==
[[Generalized Collatz Function|Generalized Collatz Functions]] (GCFs) are a specific well-studied type of Collatz-like functions on one variable where each of the piecewise definitions are affine. The halting problem for GCFs is known to be Turing complete. An even more specific example are [[Consistent Collatz]] functions which are a restriction of GCFs where the coefficients are the same for all affine functions.
An <math>n</math>-ary '''Collatz-like function''' is a partial function <math>f:\mathbb{Z}^n\hookrightarrow\mathbb{Z}^n</math> of the form
 
<math display="block">
f(t_1,t_2,\dots,t_n)=
\begin{cases}
    (P_1(t_1),P_2(t_2),\dots,P_n(t_n)) & t_1\equiv 0\mod z\\
    (P_{n+1}(t_1),P_{n+2}(t_2),\dots,P_{2n}(t_n)) & t_1\equiv 1\mod z\\
    \quad\quad\quad\quad\quad\quad\quad\quad\vdots & \quad\quad\quad\vdots\\
    (P_{nz-n+1}(t_1),\dots,P_{nz}(t_n)) & t_1\equiv -1\mod z,
\end{cases} </math>
where <math>z</math> is a positive integer and <math>P_1,P_2,\dots,P_{nz}</math> are (not necessarily distinct) univariate polynomials with rational coefficients. This definition is often restricted to those polynomials of degree one.
 
For any given <math>n</math>-ary Collatz-like function <math>g</math> and some two indexed series of nonempty subsets <math>\{S_1,S_2,\dots,S_n\},\{T_1,T_2,\dots,T_n\}</math> of the integers, we can write the well-formed formula
 
<math display="block">
\forall \sigma \in \prod_{i=1}^n S_i\exists\tau\in\prod_{i=1}^nT_i\exists x.g^{\circ x}(\sigma)=\tau
</math>
 
where <math>g^{\circ x}(\sigma)</math> is the <math>x</math>-th iterate of <math>g</math> on <math>\sigma</math>. Proving or disproving a formula of the above form is a '''Collatz-like problem.'''
 
Many [[cryptids]] exhibit '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. For example, [[Antihydra]]'s halting status is directly related to the truth value of <math>\exists \tau\in\mathbb{N}\times\{-1\}\exists x.A^{\circ x}(8,0)=\tau</math> where
 
<math display="block">
A(a,b)=
\begin{cases}
    (\frac{3}{2}a,b+2) & x\equiv 0\mod 2\\
    (\frac{3}{2}a-\frac{1}{2},b-1) & x\equiv 1\mod 2.
\end{cases}</math>


== Examples ==
== Examples ==


=== BB(5,2) Champion ===
=== 5-state busy beaver winner ===
Consider the [[5-state busy beaver winner|BB(5,2) Champion]] and the generalized configuration:
Consider the [[5-state busy beaver winner]] and the generalized configuration:


<math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that:
<math display="block">M(n) = 0^\infty \; \textrm{<}\text{A} \; 1^n \; 0^\infty</math>Pascal Michel showed that:


<math display="block">\begin{array}{lcl}
<math display="block">\begin{array}{lcl}
   0^\infty \; \textrm{<A} \; 0^\infty & = & M(0) \\
   0^\infty \; \textrm{<}\textrm{A} \; 0^\infty & = & M(0) \\
   M(3k)  & \xrightarrow{5 k^2 + 19 k + 15} & M(5k+6) \\
   M(3k)  & \xrightarrow{5k^2+19k+15} & M(5k+6) \\
   M(3k+1) & \xrightarrow{5 k^2 + 25 k + 27} & M(5k+9) \\
   M(3k+1) & \xrightarrow{5k^2+25k+27} & M(5k+9) \\
   M(3k+2) & \xrightarrow{6k +12} & 0^\infty \;\; 1 \;\; \textrm{H>} \;\; 01 \;\; {(001)}^{k+1} \;\; 1 \;\; 0^\infty \\
   M(3k+2) & \xrightarrow{6k+12} & 0^\infty\;1\;\textrm{Z}\textrm{>}\;01\;{(001)}^{k+1}\;1\;0^\infty
\end{array}</math>
\end{array}</math>


Line 55: Line 27:


=== Hydra ===
=== Hydra ===
Consider [[Hydra]] (a [[Cryptids|Cryptid]]) and the generalized configuration:
Consider [[Hydra]] and the generalized configuration:


<math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
<math display="block">C(a, b) = 0^\infty\;\textrm{<}\textrm{A}\;2\;0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
Daniel Yuan showed that:<math display="block">\begin{array}{l}
Daniel Yuan showed that:<math display="block">\begin{array}{l}
  \\
   0^\infty \; \textrm{A}\textrm{>} \; 0^\infty & & \xrightarrow{20} & C(3, 0) \\
   0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & b+1) & \to & C(3n,   & b) \\
   C(2n,  & b+1) & \to & C(3n,b) \\
   C(2n+1, & b)  & \to & C(3n+1, & b+2) \\
   C(2n+1, & b)  & \to & C(3n+1,b+2)
\end{array}</math>
\end{array}</math>


Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.
Where <math>\text{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.
 
Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l}
  h(2n)  & = & 3n  \\
  h(2n+1) & = & 3n+1 \\
\end{array}</math>starting from 3:


Starting from <math>C(3, 0)</math>, this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function
<math display="block">\begin{array}{l}
  H(2n)  & = & 3n &\text{(even transition)} \\
  H(2n+1) & = & 3n+1&\text{(odd transition)}
\end{array}</math>
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
  \\
\vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots
  3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots \\
\end{array}
\end{array}
</math>
</math>
 
=== Exponential Collatz ===
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>
Consider the machine {{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}, discovered by Pavel Kropitz in May 2022, and the general configuration:<math display="block">K(n):=0^\infty\;1\;0^n\;11\;0^5\;\textrm{C}\textrm{>}\;0^\infty</math>Shawn Ligocki showed that:
 
=== Tetration Machine ===
Consider the current [[1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|BB(6,2) Champion]] (discovered by Pavel Kropitz in May 2022) and consider the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
  \\
   0^\infty\;\textrm{A}\textrm{>}\;0^\infty&\xrightarrow{45}&K(5) \\
   0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\
   K(4k)  & \to & \operatorname{Halt}\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k)  & \to & \text{Halt}(\frac{3^{k+3} - 11}{2}) \\
   K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+1) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4k+3) & \to & K\Bigl(\frac{3^{k+3} +  1}{2}\Bigr)
   K(4k+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
\end{array}</math>
\end{array}</math>
Demonstrating Collatz-like behavior with exponential piecewise component functions.


Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
== References ==
== References ==
<references />
<references />
[[Category:Zoology]]
[[Category:Zoology]]

Latest revision as of 18:18, 28 October 2025

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:c(2k)=kc(2k+1)=3k+2

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Generalized Collatz Functions (GCFs) are a specific well-studied type of Collatz-like functions on one variable where each of the piecewise definitions are affine. The halting problem for GCFs is known to be Turing complete. An even more specific example are Consistent Collatz functions which are a restriction of GCFs where the coefficients are the same for all affine functions.

Examples

5-state busy beaver winner

Consider the 5-state busy beaver winner and the generalized configuration:

M(n)=0<A1n0Pascal Michel showed that:

0<A0=M(0)M(3k)5k2+19k+15M(5k+6)M(3k+1)5k2+25k+27M(5k+9)M(3k+2)6k+1201Z>01(001)k+110

Starting on a blank tape M(0), these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra and the generalized configuration:

C(a,b)=0<A203(a2)3b20 Daniel Yuan showed that:0A>020C(3,0)C(2n,0)Halt(9n6)C(2n,b+1)C(3n,b)C(2n+1,b)C(3n+1,b+2)

Where Halt(n) is a halting configuration with n non-zero symbols on the tape.

Starting from C(3,0), this simulates a pseudo-random walk along the b parameter, increasing it by 2 every time a is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function H(2n)=3n(even transition)H(2n+1)=3n+1(odd transition) to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below: 0..3O4E6E9O13O19O28E42E63O

Exponential Collatz

Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:K(n):=010n1105C>0Shawn Ligocki showed that: 0A>045K(5)K(4k)Halt(3k+3112)K(4k+1)K(3k+3112)K(4k+2)K(3k+3112)K(4k+3)K(3k+3+12)

Demonstrating Collatz-like behavior with exponential piecewise component functions.

Starting from config K(5), these rules iterate 15 times before reaching the halt config leaving over 1015 non-zero symbols on the tape.[3]

References