User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Added more precise upper bounds
Polygon (talk | contribs)
Added a more precise lower bound
Line 82: Line 82:
or, for a more precise lower bound:
or, for a more precise lower bound:


<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math>


<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}6 => (2  \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
<math>f^{g^{n1}(n0)}(0) > f^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}}(0) > 2 \uparrow\uparrow (2 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}) > 2\uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}} => (2  \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
<math>f^{g^{n1}(n0)}(0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


'''Upper bound'''
'''Upper bound'''
Line 108: Line 108:
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ > <math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>


or, more precisely:
or, for a more precise lower bound:


Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}}} > (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math>
Σ > <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math>


'''Upper bound'''
'''Upper bound'''
Line 132: Line 132:
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math>
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math>


Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}2^{2^{2^{32}}}</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>

Revision as of 14:45, 18 August 2025

Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

Better lower bound for BB(4,3)

Definitions

f(n)=22n+1

g(n)=5×22fn(0)+1+289

n0=5×22232+1+149

n1=2232+14

Σ = 5×22fgn1(n0)(0)+1+2+7

Lower bound on f^n(0)

f(n)=22n+1

f(0)=221;f(f(0))=22(221+1)>(2)41;f3(0)=22(22(221+1)+1)>(2)61

fk(0)=22fk1(0)+1>22fk1(0)=>(2)2fk1(0)=>(2)2afka(0)

=>fk(0)>(2)2k1=22k

=>fn(0)>22n

Upper bound

fu(n)=222n;fu(0)=222;fu0(0)=1

fu(n)>f(n) as 2n>n+1

fuk(0)=(2)3fuk1(0)

fu2(0)=fu(222)=222222=>(2)61

fuk(0)=(2)3k1=23k;fu(n)>f(n)=>23k>f(n)

fn(0)<23n

Lower bound on g^k(n)

g(n)=5×22fn(0)+1+289>5×2222n+289>2222n=2(2n+2)

g2(n)>5×22f2(2n+2)(0)+1+289>5×2222(2n+2)+289>22(2n+2)

gk(n)>2(2×gk1(n)+2)=(2)1(2×gk1(n)+2)=>>(2)a(2×gka(n)+2)

gk(n)>(2)k(2n+2)>(2)k2n

Upper bound

g(n)=5×22fn(0)+1+289<5×22(23n)+1+289<5×22(23n)+1+2<2(3n+3)

g2(n)<2(3×(2(3n+3))+3)<22(3n+4)

gk(n)<2(3×(gk1(n))+3)<22gk1(n)

gk(n)<(2)k(3n+k+2)

Lower bound on g^n1(n0)

gn1(n0)=g2232+14(5×22232+1+149)>g2232+14(22232)>(2)2232+1422232 ; Note that 26<22232<27

(2)2232+1422232>(2)2232+1426=>(2)2232+136>(2)2232+134=>(2)2232+1322=>(2)2232+122

gn1(n0)>(2)2232+122

Upper bound

gn1(n0)=g2232+14(5×22232+1+149)<(2)2232+14(3×(5×22232+1+149)+2232+14+2)<(2)2232+1427=>(2)2232+137

gn1(n0)<(2)2232+137

or, for a more precise upper bound:

gn1(n0)=g2232+14(5×22232+1+149)<(2)2232+14(3×(5×22232+1+149)+2232+14+2)<(2)2232+14(22233)

gn1(n0)<(2)2232+14(22233)

Lower bound on f^g^n1(n0)(0)

gn1(n0)>(2)2232+122 and fn(0)>22n

fgn1(n0)(0)>f(2)2232+122(0)>2(2×(2)2232+122)>2(2)2232+122=>(2)2232+112

(2)2232+112=>(2)2232+1121=>(2)2232+11=>22232+1

fgn1(n0)(0)>22232+1

or, for a more precise lower bound:

gn1(n0)>(2)2232+1422232

fgn1(n0)(0)>f(2)2232+1422232(0)>2(2×(2)2232+1422232)>2(2)2232+1422232=>(2)2232+1322232

fgn1(n0)(0)>(2)2232+1322232

Upper bound

gn1(n0)<(2)2232+137 and fn(0)<23n

fgn1(n0)(0)<2(3×(2)2232+137)<2(2)2232+138=>(2)2232+128

gn1(n0)<(2)2232+128

or, for a more precise upper bound:

gn1(n0)<(2)2232+14(22233) and fn(0)<23n

fgn1(n0)(0)<2(3×(2)2232+14(22233))<2(2)2232+14(22233+1)=>(2)2232+13(22233+1)

fgn1(n0)(0)<(2)2232+13(22234)

Lower bound on Σ

Σ = 5×22fgn1(n0)(0)+1+2+7>5×22(22232+1)+1+2+7>22232+1

Σ > 22232+1

or, for a more precise lower bound:

Σ = 5×22fgn1(n0)(0)+1+2+7>22(2)2232+1322232>(2)2232+1322232

Σ > (2)2232+1322232

Upper bound

Σ = 5×22fgn1(n0)(0)+1+2+7<5×22((2)2232+128)+1+2+7<222(2)2232+128<(2)2232+129<(2)2232+1265536=>(2)2232+1224=>(2)2232+114

(2)2232+114=>(2)2232+1122=>(2)2232+12=>(2)2232+121=>(2)2232+1+11=>2(2232+1+1)

Σ < 2(2232+1+1)

or, for a more precise upper bound:

Σ = 5×22fgn1(n0)(0)+1+2+7<222(2)2232+13(22233+1)<(2)2232+13(22233+2)

Σ < (2)2232+13(22233+2)

General bound on Σ

22232+1 < Σ < 2(2232+1+1)

More precisely: (2)2232+126 < Σ < (2)2232+129

Even more precisely: (2)2232+126<(2)2232+1322232 < Σ < (2)2232+13(22233+2)<(2)2232+127