User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Added upper bound)
(Added more precise upper bounds)
Line 62: Line 62:
'''Upper bound'''
'''Upper bound'''


<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2 < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2 \uparrow\uparrow 7 => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>


<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}7</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(3 \times (\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) + 2^{2^{32}+1}-4 + 2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math>
==Lower bound on f^g^n1(n0)(0)==
==Lower bound on f^g^n1(n0)(0)==
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
Line 89: Line 95:


<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}8</math>
or, for a more precise upper bound:
<math>g^{n1}(n0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})</math> and <math>f^{n}(0) < 2 \uparrow\uparrow 3n</math>
<math>f^{g^{n1}(n0)}(0) < 2 \uparrow\uparrow (3 \times (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}})) < 2 \uparrow\uparrow (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}(2^{2^{2^{33}}}+1) => (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)</math>
<math>f^{g^{n1}(n0)}(0) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{34}}})</math>
==Lower bound on Σ==
==Lower bound on Σ==
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 > 5 \times 2^{2^{(2 \uparrow\uparrow\uparrow 2^{2^{32}+1})+1}+2}+7 > 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math>
Line 107: Line 121:


Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
or, for a more precise upper bound:
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7 < 2^{2^{2^{(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+1)}}} < (2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2)</math>
=General bound on Σ=
=General bound on Σ=
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>
<math>2 \uparrow\uparrow\uparrow 2^{2^{32}+1}</math> < Σ < <math>2 \uparrow\uparrow\uparrow (2^{2^{32}+1}+1)</math>


More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math>
More precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}9</math>
Even more precisely: <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-2}6</math> < Σ < <math>(2 \uparrow\uparrow)^{2^{2^{32}+1}-3}(2^{2^{2^{33}}}+2) < (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}7</math>

Revision as of 14:22, 18 August 2025

Machine: 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

Better lower bound for BB(4,3)

Definitions

Σ =

Lower bound on f^n(0)

Upper bound

as

Lower bound on g^k(n)

Upper bound

Lower bound on g^n1(n0)

 ; Note that

Upper bound

or, for a more precise upper bound:

Lower bound on f^g^n1(n0)(0)

and

or, for a more precise lower bound:

Upper bound

and

or, for a more precise upper bound:

and

Lower bound on Σ

Σ =

Σ >

or, more precisely:

Σ =

Σ >

Upper bound

Σ =

Σ <

or, for a more precise upper bound:

Σ =

Σ <

General bound on Σ

< Σ <

More precisely: < Σ <

Even more precisely: < Σ <